Home
Class 12
MATHS
Show that the determinant |a^2+b^2+c^2b ...

Show that the determinant `|a^2+b^2+c^2b c+c a+a bb c+c a+a bb c+c a+a b a^2+b^c+c^2b c+c a+a bb c+c a+a bb c+c a+a b a^2+b^2+c^2|` is always non-negative. When is the determinant zero?

Promotional Banner

Similar Questions

Explore conceptually related problems

- aa bc a - b - c - - bb - c - c

Prove: |a^2+1a b a c a bb^2+1b cc a c b c^2+1|=1+a^2+b^2+c^2

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

Find the factor of determinant |(a, b+c, a^2), (b, c+a, b^2), (c, a+b, c^2)|.

The value of determinant |b c-a^2a c-b^2a b-c^2a c-b^2a b-c^2b c-a^2a b-c^2b c-a^2a c-b^2| is a. always positive b. always negative c. always zero d. cannot say anything

The value of the determinant ,a+b+2c,a,bc,b+c+2a,bc,a,c+a+2b]| is

Show that: |a b-cc+b a+c b c-a a-bb+a c|=(a+b+c)(a^2+b^2+c^2)dot

The determinant |a2\ a^2-(b-c)^2b c b^2b^2-(c-a)^2c a c^2c^2-(a-b)^2a b| is divisible by- a. a+b+c b. (a+b)(b+c)(c+a) c. a^2+b^2+c^2 d. (a-b)(b-c)(c-a)

Prove that: |1a a^2-b c1bb^2-c a1cc^2-a b|=0