Home
Class 12
MATHS
If x!=0,y!=0,z!=0 and |[1+x,1,1],[1+y,1+...

If `x!=0,y!=0,z!=0` and `|[1+x,1,1],[1+y,1+2y,1],[1+z,1+z,1+3z]|=0`, then `x^(-1)+y^(-1)+z^(-1)` is equal to a.1 b.-1 c.-3 d. none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

if x ne 0 , y ne 0 ,z ne 0 " and " |{:(1+x,,1,,1),(1+y,,1+2y,,1),(1+z,,1+z,,1+3z):}|=0 then x^(-1) +y^(-1) +z^(-1) is equal to

If x , y , z are different from zero and |[1+x,1, 1],[1 , 1+y ,1],[ 1 ,1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to

If x^(1/3)+y^(1/3)=z^(1/3), then {(x+y-z)^(3)+27xyz} equals a.0 b.-1 c. 1d.27