Home
Class 12
MATHS
y=[log(x+sqrt(x^2+1))]^2 then prove that...

`y=[log(x+sqrt(x^2+1))]^2` then prove that `(x^2+1)y_2+x y_1=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= [Log(x+sqrt(x^2+1))]^2 then show that (x^2+1)y_2+xy_1=0

If y = (x+ sqrt(1+x^2))^n then prove that (1+x^2)y_2+xy_1 = n^2y .

y = [x + sqrt(x^2 + 1)]^p , prove that (x^2 + 1)y_2 + xy_1 - p^2y = 0

If y = (sqrt(x+1) - sqrt(x-1)) , then prove that (x^2-1) y_2 +xy_1 = 1/4 y

If y=log[x+sqrt(x^(2)+1)] , then prove that (x^(2)+1)(d^(2)y)/(dx^(2))+x(dy)/(dx)=0 .

If y = log (x + sqrt(x^2+1))/(sqrt(x^2+1)) , prove that (x^2 +1) dy/dx + xy = 1

If y=log (x+ sqrt ( x^2+1)), prove that: (x^2+1) d^2y/dx^2 + xdy/dx=0 .

If y=log (x + sqrt(x^(2) + 1)) then show that, (x^(2) + 1) (d^(2)y)/(dx^(2)) + x (dy)/(dx)= 0

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .