Home
Class 12
MATHS
If l^(prime)(x) means logloglog x , the ...

If `l^(prime)(x)` means `logloglog x ,` the `log` being repeated `r` times, then `int[x l(x)l^2(x)l^3(x) l^(prime)(x)]^(-1)d s` is equal to `l^(r+1)(x)+C` (b) `(l^(r+1)(x))/(r+1)+C` `l^r(x)+C` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If l^(r)(x) means log log log...x,the log being repeated r xx,then int[x.l(x)*l^(2)(x)*l^(3)(x)...I^(r)(x)]^(-1)dx is equal to

If l^(r)(x) means log log log......log x, the log being repeated r xx,then int(1)/(xl(x)l^(2)(x)l^(3)(x)...l^(r)(x))dx

If l^(r)(x) means log log log......x being repeated r xx,then int[(xl(x)l^(2)(x)l^(3)(x)...l^(r)(x)]^(-1)dx is equal to :

If l=int(x^(5))/(sqrt(1+x^(3)))dx , then l is equal to

If f(x)=((x^(l))/(x^(m)))^(l+m)((x^(m))/(x^(n)))^(m+n)((x^(n))/(x^(l)))^(n+l) then f'(x) is equal to (a) 1 (b) 0 (c) x^(l+m+n) (d) none of these

L_(x rarr1)((1)/(ln x)-(1)/(x-1))=

Differentiate the following w.r.t. x : 2l_(n)((x-1)/(x+1))

L i m i t\ l=(lim)_(x->oo)(pi/2-t a n^-1\ x)/(ln(1-1/x)) equals

Value of [(x^l)^(I - I/l)]^(1/(l - 1)) is: