Home
Class 12
MATHS
If A+B+C=pi, prove that : sinA+sinB+sinC...

If `A+B+C=pi`, prove that : `sinA+sinB+sinC= 4cos( A/2 )cos( B/2) cos(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180 , prove that: sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)

In triangleABC,A+B+C=pi ,show that sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C /2)

Prove that : 2 sinA sinB = cos (A-B) -cos (A + B).

If A + B + C =pi , prove that : . sin A + sin B+sinC = 4 cos frac (A)(2) cos frac (B)(2) cos frac (C)(2) .

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

Statement -1: sin52^(@)+sin78^(@)+sin50^(@)=4cos26^(@)cos39^(@)cos25^(@) Statement-2: If A+B+C=pi, then sinA+sin B+sinC=4cos""(A)/(2)cos""(B)/(2)cos""(C)/(2)

If A+B+C=0^(@) then prove that sinA+sinB-sinC=-4"cos"A/2"cos"B/2"sin"C/2

If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.

If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.