Home
Class 12
MATHS
inte^tan^((-1)x)(1+x+x^2)d(cot^(-1)x)i s...

`inte^tan^((-1)x)(1+x+x^2)d(cot^(-1)x)i se q u a lto` `-e^tan^((-1)x)+c` (b) `e^tan^((-1)x)+c` `-xe^tan^((-1)x)+c` (d) `xe^tan^((-1)x)+c`

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to

e^(tan^(-1)x)log(tan x)

int e^(tan^(-1)x)((1)/(1+x^(2)))dx=

tan^(-1)(cot x)-tan^(-1)(cot2x)=

int(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x)dx equals

int(tan^(-1)x+x+tan^(-1)((1)/(x)))dx =

int(dx)/(x^(2)+2x+2) equals (A) x tan^(-1)(x+1)+C (B) tan^(-1)(x+1)+C

Prove that : 2 tan^(-1) (cosec tan^(-1) x - tan cot^(-1) x) = tan^(-1) x

The value of 2tan^(-1)(cos ec tan^(-1)x-tan cot^(-1)x) is equal to (a)cot ^(-1)x( b ) (cot^(-1)1)/(x) (c)tan ^(-1)x (d) none of these