Home
Class 12
MATHS
A+B+C=180^@ => cos^2(A/2)+cos^2 (B/2) +c...

`A+B+C=180^@` =>` cos^2(A/2)+cos^2 (B/2) +cos^2(C/2)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2 (A/2) + cos^2 (B/2) - cos^2 (C/2) = 2cos (A/2) cos (B/2) sin (C/2)

If A+B+C=180^0 , prove that : cos^2(A/2) + cos^2(B/2) - cos^2(C/2) = 2cos(A/2) cos(B/2) sin( C/2)

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

If A+B+C = pi show that cos^2 (A/2)-cos^2 (B/2)-cos^2 (C/2)=-2sin(A/2)cos(B/2)cos(C/2)

If A+B+C=pi then prove that cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A/2)cos(B/2)sin(C/2)

If A+B+C=180^@ " then " cos^(@) A + cos^(2)B + cos^(2)C=

A + B + C = 180 ^ (@) rArr cos2A + cos2B + cos2C =

If A + B + C = 180^(@) , prove that sin A + sin B + sin C = 4 cos (A)/(2) cos"" (B)/(2) cos"" (C )/(2)