Home
Class 12
MATHS
Find the value of determinant |sqrt((13)...

Find the value of determinant `|sqrt((13))+sqrt(3)2sqrt(5)sqrt(5)sqrt((15))+sqrt((26))5sqrt((10))3+sqrt((65))sqrt((15))5|`

Text Solution

Verified by Experts

We have
` Delta=|{:(sqrt(13)+sqrt(3),,2sqrt(5),,sqrt(5)),(sqrt(15)+sqrt(26),,5,,sqrt(10)),(3+ sqrt(65),,sqrt(15),,5):}|`
Taking `sqrt(5)` common from`C_(2) " and " C_(3)` we get
` Delta =(sqrt(5))^(2) |{:(sqrt(13)+sqrt(3),,2,,1),(sqrt(15)+sqrt(26),,sqrt(5),,sqrt(2)),(3+ sqrt(65),,sqrt(3),,sqrt(5)):}|`
Applying `C_(1) to C_(1) -sqrt(3)C_(2) -sqrt(13)C_(3)` we get
`|{:(-sqrt(3),,2,,1),(0,,sqrt(5),,sqrt(2)),(0,,sqrt(3),,sqrt(5)):}|`
(Expanding along `C_(1))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of determinat |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5):}| .

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqrt(15)+sqrt(26),5,sqrt(10)),(3+sqrt(65),sqrt(15),5)| is equal to

5sqrt(5)+15sqrt(5) =?

(sqrt(3)-sqrt(5))(sqrt(3)+sqrt(5))/(sqrt(7)-2sqrt(5))

1/(sqrt(3)+sqrt(2))-2/(sqrt(5)-sqrt(3))-3/(sqrt(2)-sqrt(5))

Find the value of (sqrt(sqrt(5)+sqrt(2))+sqrt(sqrt(5)-sqrt(2)))/(sqrt(sqrt(5)+sqrt(3)))

sqrt(11)+sqrt(3),sqrt(20),sqrt(5)sqrt(15)+sqrt(22),sqrt(25),sqrt(10)3+sqrt(55),sqrt(15),sqrt(25)]|=

(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))