Home
Class 12
MATHS
If f is a real function such that f(x)>0...

If `f` is a real function such that `f(x)>0,f^(prime)(xx)` is continuous for all real `xa n da xf^(prime)(x)geq2sqrt(f(x))-2af(x),(a x!=2),` show that `sqrt(f(x))geq(sqrt(f(1)))/x ,xgeq1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real valued function such that f(x)+3xf(1/x)=2(x+1) for all real x > 0. The value of f(5) is

Value of f(0) so that f(x)=(sqrt(2+x)-sqrt(2))/(x) is continuous at x=0 is

Let f be a real vlaued fuction with domain R such that f(x+1)+f(x-1)=sqrt(2)f(x) for all x in R , then ,

Let the function f satisfies f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) foe all x and f(0)=3 The value of f(x).f^(prime)(-x)=f(-x).f^(prime)(x) for all x, is

If f(x) is continuous at x=sqrt(2) , where f(x)=(sqrt(3+2x)-(sqrt(2)+1))/(x^(2)-2) , for x!= sqrt(2) , then f(sqrt(2))=

If function f(x)=(sqrt(1+x)-3sqrt(1+x))/(x) continuous function at x=0 then f(0) is equal to

f(x) is differentiable function at x=a such that f'(a)=2 , f(a)=4. Find lim_(xrarra) (xf(a)-af(x))/(x-a)

If f(x) is continuous at x=2a , where f(x)=(sqrt(x)-sqrt(2a)+sqrt(x-2a))/(sqrt(x^(2)-4a^(2))) , for x!=2a , then f(2a)=

If f: R to [0,∞) be a function such that f(x -1) + f(x + 1) = sqrt3(f(x)) then prove that f(x + 12) = f(x) .