Home
Class 12
MATHS
{:("Column-I","Column-II"),(A.f(x) = (1)...

`{:("Column-I","Column-II"),(A.f(x) = (1)/(sqrt(x -2)),p.lim_(x to 0)f(x) =1),(B. f(x) = (3x - "sin"x)/(x + "sin" x), q. lim_(x to 0)f(x) = 0),(C.f(x) = x "sin"(pi)/(x) f(0)=0,r.lim_(x to oo) f(x) = 0),(f(x) = tan^(-1) (1)/(x),s.lim_(x to 0) "does not exist"):}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) = (sin [x])/([x]) for [x] ne 0. Then lim _(x to 0_(-)) f (x) equals :

If f(x)=x sin(1/x), x!=0 then (lim)_(x->0)f(x)=

f(x)=e^x then lim_(x rarr 0) f(f(x))^(1/{f(x)} is

Let f (x) =(ax+b)/(x+1), lim_(x rarr 0)f(x)=2 and lim_(x to oo)f(x)=1 , Prove that f (- 2) = 0.

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

If f(x)={:{(2x+1,x le 0),(3(x+1),x gt 0):} . Find lim_(x to 0) f(x) and lim_(x to 1) f(x) .

If f(x) = [((sin [x])/([x]), [x] ne 0),(0, [x] = 0)] , then lim_(x rarr 0) f(x) is :

It is given that f(x) = (ax+b)/(x+1) , Lim _(x to 0) f(x) and Lim_(x to oo) f(x) = 1 Prove that fx(-2) = 0 .