Home
Class 12
MATHS
int(ln(tanx)/(sinxcosx)dxi se q u a lto ...

`int(ln(tanx)/(sinxcosx)dx`i se q u a lto (a)`1/2ln(tanx)+c` (b) `1/2ln(tan^2x)+c` (c)`1/2(ln(tanx))^2+c` (d) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(tanx)/(log(cosx))dx=

int ((1+tanx))/((x+log secx))dx

inte^(x)[tanx-log(cosx)]dx=

The value of int("ln(tanx))/(sinxcosx) dx is equal to

("lim")_(xvec0)("cos"(tanx)-cosx)/(x^4)i se q u a lto 1/6 (b) -1/3 (c) 1/2 (d) 1

int(x+sinx)/(1+cosx)dx= (A) xtan(x/2)+c (B) log(1-cosx)+c (C) (tan(x/2))/2+c (D) none of these

int_0^(pi//2)log(tanx)dx

int tanx dx=-log |cosx|+c

int(secx" cosec "x)/(log(tanx))dx