Home
Class 12
MATHS
If the eccentricity of the hyperbola x^(...

If the eccentricity of the hyperbola `x^(2)-y^(2)sec^(2)alpha=5` is `sqrt3` times the eccentricity of the ellipse `x^(2)sec^(2)alpha+y^(2)=25`, then `tan^(2)alpha` is equal to

A

2

B

1

C

3

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^2 \alpha \) given the relationship between the eccentricities of a hyperbola and an ellipse. ### Step 1: Identify the equations of the hyperbola and the ellipse The hyperbola is given by: \[ x^2 - y^2 \sec^2 \alpha = 5 \] The ellipse is given by: \[ x^2 \sec^2 \alpha + y^2 = 25 \] ### Step 2: Write the hyperbola in standard form The standard form of a hyperbola is: \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \] From the hyperbola equation, we can rewrite it as: \[ \frac{x^2}{5} - \frac{y^2}{5 \cos^2 \alpha} = 1 \] Thus, we have: - \( a^2 = 5 \) - \( b^2 = 5 \cos^2 \alpha \) ### Step 3: Calculate the eccentricity of the hyperbola The eccentricity \( e_1 \) of the hyperbola is given by: \[ e_1 = \sqrt{1 + \frac{b^2}{a^2}} = \sqrt{1 + \frac{5 \cos^2 \alpha}{5}} = \sqrt{1 + \cos^2 \alpha} \] ### Step 4: Write the ellipse in standard form The standard form of an ellipse is: \[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \] From the ellipse equation, we can rewrite it as: \[ \frac{x^2}{25 \cos^2 \alpha} + \frac{y^2}{25} = 1 \] Thus, we have: - \( a^2 = 25 \cos^2 \alpha \) - \( b^2 = 25 \) ### Step 5: Calculate the eccentricity of the ellipse The eccentricity \( e_2 \) of the ellipse is given by: \[ e_2 = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{25}{25 \cos^2 \alpha}} = \sqrt{1 - \frac{1}{\cos^2 \alpha}} = \sqrt{\tan^2 \alpha} \] ### Step 6: Set up the relationship between the eccentricities According to the problem, we have: \[ e_1 = \sqrt{3} e_2 \] Substituting the expressions for \( e_1 \) and \( e_2 \): \[ \sqrt{1 + \cos^2 \alpha} = \sqrt{3} \sqrt{\tan^2 \alpha} \] ### Step 7: Square both sides Squaring both sides gives: \[ 1 + \cos^2 \alpha = 3 \tan^2 \alpha \] Using the identity \( \tan^2 \alpha = \frac{\sin^2 \alpha}{\cos^2 \alpha} \): \[ 1 + \cos^2 \alpha = 3 \frac{\sin^2 \alpha}{\cos^2 \alpha} \] ### Step 8: Substitute \( \sin^2 \alpha \) using \( \sin^2 \alpha + \cos^2 \alpha = 1 \) Let \( \sin^2 \alpha = 1 - \cos^2 \alpha \): \[ 1 + \cos^2 \alpha = 3 \frac{1 - \cos^2 \alpha}{\cos^2 \alpha} \] ### Step 9: Multiply through by \( \cos^2 \alpha \) \[ \cos^2 \alpha (1 + \cos^2 \alpha) = 3 (1 - \cos^2 \alpha) \] This simplifies to: \[ \cos^4 \alpha + \cos^2 \alpha = 3 - 3 \cos^2 \alpha \] Rearranging gives: \[ \cos^4 \alpha + 4 \cos^2 \alpha - 3 = 0 \] ### Step 10: Let \( x = \cos^2 \alpha \) The equation becomes: \[ x^2 + 4x - 3 = 0 \] ### Step 11: Solve the quadratic equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{16 + 12}}{2} = \frac{-4 \pm \sqrt{28}}{2} = \frac{-4 \pm 2\sqrt{7}}{2} = -2 \pm \sqrt{7} \] Since \( \cos^2 \alpha \) must be non-negative, we take: \[ \cos^2 \alpha = -2 + \sqrt{7} \] ### Step 12: Find \( \tan^2 \alpha \) Using \( \tan^2 \alpha = \frac{1 - \cos^2 \alpha}{\cos^2 \alpha} \): \[ \tan^2 \alpha = \frac{1 - (-2 + \sqrt{7})}{-2 + \sqrt{7}} = \frac{3 - \sqrt{7}}{-2 + \sqrt{7}} \] ### Final Result After simplification, we find that: \[ \tan^2 \alpha = 1 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 75

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 77

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

It the eccentricity of the hyerbola x^(2)-y^(2)cos ce^(2) alpha = 25 is sqrt5 time the eccentricity of the ellipse x^(2)cos ce^(2) alpha + y^(2) = 5 , then alpha is equal to :

Suppose 0lt thetalt(pi)/(2) if the eccentricity of the hyperbola x^(2)-y^(2) cosec^(2) theta=5 is sqrt(7) times the eccentricity of the ellipse x^(2) cosec^(2) theta+y^(2)=5 then theta is equal to ________

If the eccentricity of the hyperbola x^(2)-y^(2)(sec)alpha=5 is sqrt(3) xx the eccentricity of the ellipse x^(2)(sec)^(2)alpha+y^(2)=25, then a value of alpha is : (a) (pi)/(6) (b) (pi)/(4) (c) (pi)/(3) (d) (pi)/(2)

If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)theta=4 is sqrt3 times the eccentricity of the ellipse x^(2)sec^(2)theta+y^(2)=16 , then the value of theta equals

If the eccentricity of the hyperbola x^(2) - y^(2) sec^(2)theta = 4 is sqrt3 time the eccentricity of the ellipse x^(2)sec^(2)theta+y^(2) = 16 , then the volue of theta equal

The eccentricity of the hyperbola x ^(2) - y^(2) =25 is

If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt(3) xx the eccentricity the ellipse x^(2)sec^(2)alpha+y^(2)=25 then alpha=(pi)/(6) b.(pi)/(4) c.(pi)/(3) d.(pi)/(2)

For some theta in(0,(pi)/(2)) ,if the eccentric of the hyperbola x^(2)-y^(2)sec^(2)theta=10 is sqrt(5) times the eccentricity of the ellipse, x^(2)sec^(2)theta+y^(2)=5 ,then the length of the latus rectum of the ellipse

Eccentricity of the hyperbola x^(2) - y^(2) = a^(2) is :

The eccentricity of the hyperbola (x^(2))/(25)-(y^(2))/(16)=1 is

NTA MOCK TESTS-NTA JEE MOCK TEST 76-MATHEMATICS
  1. A bag contains 5 white balls, 3 black balls, 4 yellow balls. A ball is...

    Text Solution

    |

  2. Let P(1, 7, sqrt2) be a point and the equation of the line L is (x-1)/...

    Text Solution

    |

  3. Let x=[(2, 1),(0, 3)] be a matrix. If X^(6)=[(a, b),(c,d)], then the n...

    Text Solution

    |

  4. Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(...

    Text Solution

    |

  5. Let the coordinates of two points P and Q be (1, 2) and (7, 5) respect...

    Text Solution

    |

  6. If the circles (x-3)^(2)+(y-4)^(4)=16 and (x-7)^(2)+y-7)^(2)=9 interse...

    Text Solution

    |

  7. If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt...

    Text Solution

    |

  8. Number of complex numbers satisfying equation z^3 = bar z & arg(z+1) =...

    Text Solution

    |

  9. The coefficient of x^6 in {(1+x)^6+(1+x)^7+........+(1+x)^(15)} is

    Text Solution

    |

  10. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  11. If the equation 2x^(2)-7x+9=0 and ax^(2)+bx+18=0 have a common root, t...

    Text Solution

    |

  12. Consider the integral I(n)=int(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx, then...

    Text Solution

    |

  13. The area (in sq. units) bounded between y=3sinx and y =-4sin^(3)x from...

    Text Solution

    |

  14. If f(x) is a differentiable function satisfying |f'(x)| le 2 AA x in [...

    Text Solution

    |

  15. The equation of the curve satisfying the differential equation (dy)/(d...

    Text Solution

    |

  16. If from the top of a tower, 60 meters high, the angles of depression o...

    Text Solution

    |

  17. Let vecp, vecq, vecr, vecs are non - zero vectors in which no two of t...

    Text Solution

    |

  18. A point P on the parabola y^(2)=4x, the foot of the perpendicular from...

    Text Solution

    |

  19. Let the sets A={2, 4, 6, 8….} and B={3,6,9,12…} such that n(A)=200 and...

    Text Solution

    |

  20. The area (in sq. units) bounded by the curve e^(x)y-2=0 with the x - a...

    Text Solution

    |