Home
Class 12
MATHS
Consider the integral I(n)=int(0)^((n)/(...

Consider the integral `I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx`, then the value of `I_(20)-I_(19)` is

A

`(1)/(20)`

B

`(-1)/(19)`

C

`(-1)/(25)`

D

`(1)/(19)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I_n = \int_0^{\frac{n}{4}} \frac{\sin((2n-1)x)}{\sin x} \, dx \) and find the value of \( I_{20} - I_{19} \), we can follow these steps: ### Step 1: Write down the expressions for \( I_{20} \) and \( I_{19} \) \[ I_{20} = \int_0^{\frac{20}{4}} \frac{\sin(39x)}{\sin x} \, dx = \int_0^{5} \frac{\sin(39x)}{\sin x} \, dx \] \[ I_{19} = \int_0^{\frac{19}{4}} \frac{\sin(37x)}{\sin x} \, dx = \int_0^{4.75} \frac{\sin(37x)}{\sin x} \, dx \] ### Step 2: Set up the expression for \( I_{20} - I_{19} \) \[ I_{20} - I_{19} = \int_0^{5} \frac{\sin(39x)}{\sin x} \, dx - \int_0^{4.75} \frac{\sin(37x)}{\sin x} \, dx \] This can be rewritten as: \[ I_{20} - I_{19} = \int_{4.75}^{5} \frac{\sin(39x)}{\sin x} \, dx + \int_0^{4.75} \left( \frac{\sin(39x)}{\sin x} - \frac{\sin(37x)}{\sin x} \right) dx \] ### Step 3: Use the sine difference identity Using the identity \( \sin a - \sin b = 2 \sin\left(\frac{a-b}{2}\right) \cos\left(\frac{a+b}{2}\right) \): \[ \sin(39x) - \sin(37x) = 2 \sin(x) \cos(38x) \] Thus, we can express the integral as: \[ I_{20} - I_{19} = \int_0^{4.75} \frac{2 \sin(x) \cos(38x)}{\sin x} \, dx = 2 \int_0^{4.75} \cos(38x) \, dx \] ### Step 4: Evaluate the integral Now we evaluate: \[ \int_0^{4.75} \cos(38x) \, dx \] The integral of \( \cos(kx) \) is \( \frac{1}{k} \sin(kx) \): \[ \int \cos(38x) \, dx = \frac{1}{38} \sin(38x) \] Evaluating from 0 to 4.75: \[ \left[ \frac{1}{38} \sin(38x) \right]_0^{4.75} = \frac{1}{38} \left( \sin(38 \times 4.75) - \sin(0) \right) = \frac{1}{38} \sin(180.5) \] Since \( \sin(180.5) \) is approximately \( -0.5 \): \[ \int_0^{4.75} \cos(38x) \, dx \approx \frac{-0.5}{38} \] ### Step 5: Final calculation Thus: \[ I_{20} - I_{19} = 2 \cdot \frac{-0.5}{38} = \frac{-1}{38} \] ### Conclusion The final value of \( I_{20} - I_{19} \) is: \[ \boxed{-\frac{1}{38}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 75

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 77

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the integral I_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx ,. Then the value of [I_(20)]^(3)-[I_(19)]^(3) is

If I_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then

I_(n)=int_(0)^((pi)/(4))tan^(n)xdx, then the value of n(l_(n-1)+I_(n+1)) is

If I_(n)=int_(0)^(pi)x^(n)sinxdx , then find the value of I_(5)+20I_(3) .

If I_(n)=int(sin nx)/(sin x)dx, for n>1, then the value of I_(n)-I_(n-2) is

Let I_(n)int_(0)^((pi)/(2))(sin x+cos x)^(n)dx(n>=2) Then the value of nI_(n)-2(n-1)I_(n-2) is

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

Consider the integral I_(m) = int_(0)^(pi) (sin2mx)/(sinx ) dx , where m is a positive integer. What is I_(1) equal to ?

NTA MOCK TESTS-NTA JEE MOCK TEST 76-MATHEMATICS
  1. A bag contains 5 white balls, 3 black balls, 4 yellow balls. A ball is...

    Text Solution

    |

  2. Let P(1, 7, sqrt2) be a point and the equation of the line L is (x-1)/...

    Text Solution

    |

  3. Let x=[(2, 1),(0, 3)] be a matrix. If X^(6)=[(a, b),(c,d)], then the n...

    Text Solution

    |

  4. Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(...

    Text Solution

    |

  5. Let the coordinates of two points P and Q be (1, 2) and (7, 5) respect...

    Text Solution

    |

  6. If the circles (x-3)^(2)+(y-4)^(4)=16 and (x-7)^(2)+y-7)^(2)=9 interse...

    Text Solution

    |

  7. If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt...

    Text Solution

    |

  8. Number of complex numbers satisfying equation z^3 = bar z & arg(z+1) =...

    Text Solution

    |

  9. The coefficient of x^6 in {(1+x)^6+(1+x)^7+........+(1+x)^(15)} is

    Text Solution

    |

  10. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  11. If the equation 2x^(2)-7x+9=0 and ax^(2)+bx+18=0 have a common root, t...

    Text Solution

    |

  12. Consider the integral I(n)=int(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx, then...

    Text Solution

    |

  13. The area (in sq. units) bounded between y=3sinx and y =-4sin^(3)x from...

    Text Solution

    |

  14. If f(x) is a differentiable function satisfying |f'(x)| le 2 AA x in [...

    Text Solution

    |

  15. The equation of the curve satisfying the differential equation (dy)/(d...

    Text Solution

    |

  16. If from the top of a tower, 60 meters high, the angles of depression o...

    Text Solution

    |

  17. Let vecp, vecq, vecr, vecs are non - zero vectors in which no two of t...

    Text Solution

    |

  18. A point P on the parabola y^(2)=4x, the foot of the perpendicular from...

    Text Solution

    |

  19. Let the sets A={2, 4, 6, 8….} and B={3,6,9,12…} such that n(A)=200 and...

    Text Solution

    |

  20. The area (in sq. units) bounded by the curve e^(x)y-2=0 with the x - a...

    Text Solution

    |