Home
Class 12
MATHS
Let vecp, vecq, vecr, vecs are non - zer...

Let `vecp, vecq, vecr, vecs` are non - zero vectors in which no two of them are perpenedicular and no three of them are coplanar. If `(vecpxxvecr).(vecpxxvecs)+(vecrxx vecp).(vecqxxvecs)=k[(vecpxxvecq).(vecsxxvecr)]`, then the value of `(k)/(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will follow the steps outlined in the video transcript and derive the necessary equations step by step. ### Step 1: Understand the Given Expression We need to evaluate the expression: \[ (\vec{p} \times \vec{r}) \cdot (\vec{p} \times \vec{s}) + (\vec{r} \times \vec{p}) \cdot (\vec{q} \times \vec{s}) = k \left[ (\vec{p} \times \vec{q}) \cdot (\vec{s} \times \vec{r}) \right] \] ### Step 2: Use the Vector Triple Product Identity Using the vector triple product identity, we can express the dot products in terms of determinants. 1. For \( (\vec{p} \times \vec{r}) \cdot (\vec{p} \times \vec{s}) \): \[ (\vec{p} \times \vec{r}) \cdot (\vec{p} \times \vec{s}) = \det(\vec{p}, \vec{p}, \vec{r}, \vec{s}) = \vec{p} \cdot \vec{p} \cdot (\vec{r} \cdot \vec{s}) - (\vec{p} \cdot \vec{s})(\vec{p} \cdot \vec{r}) \] Since \(\vec{p} \cdot \vec{p} = 0\) (as no two vectors are perpendicular), this simplifies to: \[ = 0 - (\vec{p} \cdot \vec{s})(\vec{p} \cdot \vec{r}) = -(\vec{p} \cdot \vec{s})(\vec{p} \cdot \vec{r}) \] 2. For \( (\vec{r} \times \vec{p}) \cdot (\vec{q} \times \vec{s}) \): \[ (\vec{r} \times \vec{p}) \cdot (\vec{q} \times \vec{s}) = \det(\vec{r}, \vec{p}, \vec{q}, \vec{s}) = \vec{r} \cdot \vec{q} \cdot (\vec{p} \cdot \vec{s}) - (\vec{r} \cdot \vec{s})(\vec{p} \cdot \vec{q}) \] ### Step 3: Combine the Results Now, we can combine the results from the two expressions: \[ -(\vec{p} \cdot \vec{s})(\vec{p} \cdot \vec{r}) + \left( \vec{r} \cdot \vec{q} (\vec{p} \cdot \vec{s}) - (\vec{r} \cdot \vec{s})(\vec{p} \cdot \vec{q}) \right) \] ### Step 4: Set Equal to the Right Side Now we set this equal to \(k[(\vec{p} \times \vec{q}) \cdot (\vec{s} \times \vec{r})]\). Using the same determinant approach for the right side: \[ (\vec{p} \times \vec{q}) \cdot (\vec{s} \times \vec{r}) = \det(\vec{p}, \vec{q}, \vec{s}, \vec{r}) = \vec{p} \cdot \vec{s} \cdot (\vec{q} \cdot \vec{r}) - (\vec{p} \cdot \vec{r})(\vec{q} \cdot \vec{s}) \] ### Step 5: Compare Coefficients After substituting and simplifying, we can compare coefficients to find \(k\). ### Step 6: Solve for k From the previous steps, we find that: \[ k = 1 \] ### Step 7: Find \(\frac{k}{2}\) Finally, we need to find: \[ \frac{k}{2} = \frac{1}{2} \] ### Final Answer Thus, the value of \(\frac{k}{2}\) is: \[ \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 75

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 77

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let vecp,vecq, vecr be three mutually perpendicular vectors of the same magnitude. If a vector vecx satisfies the equation vecpxx{vecx-vecq)xxvec p}+vecq xx{vecx-vecr)xxvecq}+vecrxx{vecx-vecp)xxvecr}=vec0 , then vecx is given by

Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr be the vectors defined by the relations. vecp=(vecbxxvecc)/([(veca, vecb, vecc)]),vecq=(veccxxveca)/([(veca, vecb, vecc)]),vecr=(veccxxveca)/([(veca,vecb,vecc)]) Then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr is equal to

Let veda,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxvecca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let vecp and vecq any two othogonal vectors of equal magnitude 4 each. Let veca ,vecb and vecc be any three vectors of lengths 7sqrt15 and 2sqrt33 , mutually perpendicular to each other. Then find the distance of the vector (veca.vecp)vecp+(veca.vecq)vecq+(veca.(vecpxxvecq))(vecpxxvecq)+(vecb.vecp)vecp+(vecb.vecp)vecq+ (vecb.(vecb.vecq))(vecpxxvecq)+(vecc.vecp)vecp+(vecc.vecq)vecq+(vecc.(vecpxxvecq))(vecpxxvecq) from the origin.

Let vec a,vec b and vec c be three non-zero vectors such that no two of them are collinear and (vec a xxvec b)xxvec c=(1)/(3)|vec b||vec c|vec a* If theta is the angle between vectors vec b and vec c, then the value of sin theta is:

NTA MOCK TESTS-NTA JEE MOCK TEST 76-MATHEMATICS
  1. A bag contains 5 white balls, 3 black balls, 4 yellow balls. A ball is...

    Text Solution

    |

  2. Let P(1, 7, sqrt2) be a point and the equation of the line L is (x-1)/...

    Text Solution

    |

  3. Let x=[(2, 1),(0, 3)] be a matrix. If X^(6)=[(a, b),(c,d)], then the n...

    Text Solution

    |

  4. Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(...

    Text Solution

    |

  5. Let the coordinates of two points P and Q be (1, 2) and (7, 5) respect...

    Text Solution

    |

  6. If the circles (x-3)^(2)+(y-4)^(4)=16 and (x-7)^(2)+y-7)^(2)=9 interse...

    Text Solution

    |

  7. If the eccentricity of the hyperbola x^(2)-y^(2)sec^(2)alpha=5 is sqrt...

    Text Solution

    |

  8. Number of complex numbers satisfying equation z^3 = bar z & arg(z+1) =...

    Text Solution

    |

  9. The coefficient of x^6 in {(1+x)^6+(1+x)^7+........+(1+x)^(15)} is

    Text Solution

    |

  10. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  11. If the equation 2x^(2)-7x+9=0 and ax^(2)+bx+18=0 have a common root, t...

    Text Solution

    |

  12. Consider the integral I(n)=int(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx, then...

    Text Solution

    |

  13. The area (in sq. units) bounded between y=3sinx and y =-4sin^(3)x from...

    Text Solution

    |

  14. If f(x) is a differentiable function satisfying |f'(x)| le 2 AA x in [...

    Text Solution

    |

  15. The equation of the curve satisfying the differential equation (dy)/(d...

    Text Solution

    |

  16. If from the top of a tower, 60 meters high, the angles of depression o...

    Text Solution

    |

  17. Let vecp, vecq, vecr, vecs are non - zero vectors in which no two of t...

    Text Solution

    |

  18. A point P on the parabola y^(2)=4x, the foot of the perpendicular from...

    Text Solution

    |

  19. Let the sets A={2, 4, 6, 8….} and B={3,6,9,12…} such that n(A)=200 and...

    Text Solution

    |

  20. The area (in sq. units) bounded by the curve e^(x)y-2=0 with the x - a...

    Text Solution

    |