Home
Class 12
MATHS
The value of lim(xrarr0)((1+tanx)/(1+sin...

The value of `lim_(xrarr0)((1+tanx)/(1+sinx))^((2)/(sinx))` is equal to

A

0

B

1

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \left( \frac{1 + \tan x}{1 + \sin x} \right)^{\frac{2}{\sin x}} \), we will follow these steps: ### Step 1: Substitute \( x = 0 \) First, we will substitute \( x = 0 \) directly into the expression to check if we can evaluate the limit directly. \[ \frac{1 + \tan(0)}{1 + \sin(0)} = \frac{1 + 0}{1 + 0} = \frac{1}{1} = 1 \] The exponent \( \frac{2}{\sin(0)} \) becomes \( \frac{2}{0} \), which approaches infinity. Therefore, we have the indeterminate form \( 1^{\infty} \). ### Step 2: Rewrite the limit Since we have an indeterminate form \( 1^{\infty} \), we can rewrite the limit using the exponential function: \[ L = \lim_{x \to 0} \left( \frac{1 + \tan x}{1 + \sin x} \right)^{\frac{2}{\sin x}} = e^{\lim_{x \to 0} \frac{2}{\sin x} \left( \frac{1 + \tan x}{1 + \sin x} - 1 \right)} \] ### Step 3: Simplify the expression inside the limit Now we need to simplify \( \frac{1 + \tan x}{1 + \sin x} - 1 \): \[ \frac{1 + \tan x}{1 + \sin x} - 1 = \frac{(1 + \tan x) - (1 + \sin x)}{1 + \sin x} = \frac{\tan x - \sin x}{1 + \sin x} \] ### Step 4: Use Taylor series expansions Next, we can use Taylor series expansions for \( \tan x \) and \( \sin x \) around \( x = 0 \): - \( \tan x \approx x + \frac{x^3}{3} + O(x^5) \) - \( \sin x \approx x - \frac{x^3}{6} + O(x^5) \) Thus, \[ \tan x - \sin x \approx \left( x + \frac{x^3}{3} \right) - \left( x - \frac{x^3}{6} \right) = \frac{x^3}{3} + \frac{x^3}{6} = \frac{x^3}{2} \] ### Step 5: Substitute back into the limit Now we substitute back into our limit: \[ \lim_{x \to 0} \frac{2}{\sin x} \cdot \frac{\tan x - \sin x}{1 + \sin x} = \lim_{x \to 0} \frac{2}{\sin x} \cdot \frac{\frac{x^3}{2}}{1 + \sin x} \] As \( x \to 0 \), \( \sin x \to x \) and \( 1 + \sin x \to 1 \): \[ = \lim_{x \to 0} \frac{2 \cdot \frac{x^3}{2}}{x} = \lim_{x \to 0} \frac{x^3}{x} = \lim_{x \to 0} x^2 = 0 \] ### Step 6: Final result Thus, we have: \[ L = e^0 = 1 \] ### Conclusion The value of the limit is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 77

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 79

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is

The value of lim_(xrarr0) ((1+tanx)/(1+sin x))^(cosec x) , is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr 0) (1+sinx)^2 , is

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

lim_(xrarr0) (x^(2)-x)/(sinx)

The value of lim_(xrarr-pi)(|x+pi|)/(sinx)

The value of lim_(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 78-MATHEMATICS
  1. A is a square matrix of order 3xx3. The matrices A, 4A^(-1), A^(T) all...

    Text Solution

    |

  2. The equation of a straight line passing through the point (3, 6) and c...

    Text Solution

    |

  3. The value of lim(xrarr0)((1+tanx)/(1+sinx))^((2)/(sinx)) is equal to

    Text Solution

    |

  4. If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):}, the...

    Text Solution

    |

  5. If phi(x)=log(8)log(3)x, then phi'(e ) is equal to

    Text Solution

    |

  6. If the trigonometric equation tan^(-1)x=2sin^(-1)a has a solution, the...

    Text Solution

    |

  7. The negation of the statement ''If I will become famous then I will op...

    Text Solution

    |

  8. A weighted coin with the probability of showing a head is (2)/(3) is t...

    Text Solution

    |

  9. If the volume of the parallelepiped formed by the vectors veca xx vecb...

    Text Solution

    |

  10. The system of equations kx+(k+2)y+(k-2)z=0, (k+2)x+ky+(k+4)z=0 (k-2)x+...

    Text Solution

    |

  11. If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2)...

    Text Solution

    |

  12. The function f(x)=2sin x-e^(x), AA x in [0, pi] has

    Text Solution

    |

  13. The area (in sq. units) bounded between y =2xln x and y =-x from x=e t...

    Text Solution

    |

  14. A curve is such that the x - intercept of the tangent drawn to it the ...

    Text Solution

    |

  15. P lies on the line y=x and Q lies on y= 2x. The equation for the locu...

    Text Solution

    |

  16. The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is ...

    Text Solution

    |

  17. The area of triangle formed by the lines x-y=0, x+y=0 and any tangent ...

    Text Solution

    |

  18. For a complex number z, the product of the real parts of the roots of ...

    Text Solution

    |

  19. If the sum of the first n terms of an arithmetic progression, whose fi...

    Text Solution

    |

  20. Given four points A(2, 1, 0)m B(1, 2, 3), C(3, 1, 1) and D(0, 1, 3). P...

    Text Solution

    |