Home
Class 12
MATHS
The number of 2xx2 matrices A with real ...

The number of `2xx2` matrices A with real entries, such that `A+A^(T)=3I` and `A A^(T)=5I`, is equal to

A

0

B

1

C

2

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of \(2 \times 2\) matrices \(A\) with real entries that satisfy the equations: 1. \(A + A^T = 3I\) 2. \(AA^T = 5I\) Here, \(I\) is the identity matrix. ### Step 1: Define the Matrix \(A\) Let \(A\) be defined as: \[ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] ### Step 2: Calculate \(A^T\) The transpose of \(A\) is given by: \[ A^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \] ### Step 3: Use the First Equation From the first equation, we have: \[ A + A^T = 3I \] Substituting the matrices, we get: \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} 2a & b + c \\ b + c & 2d \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] From this, we can equate the corresponding elements: 1. \(2a = 3 \Rightarrow a = \frac{3}{2}\) 2. \(2d = 3 \Rightarrow d = \frac{3}{2}\) 3. \(b + c = 0 \Rightarrow c = -b\) ### Step 4: Substitute Values into Matrix \(A\) Now substituting the values of \(a\) and \(d\) back into the matrix \(A\): \[ A = \begin{pmatrix} \frac{3}{2} & b \\ -b & \frac{3}{2} \end{pmatrix} \] ### Step 5: Use the Second Equation Now, we apply the second equation: \[ AA^T = 5I \] Calculating \(AA^T\): \[ AA^T = \begin{pmatrix} \frac{3}{2} & b \\ -b & \frac{3}{2} \end{pmatrix} \begin{pmatrix} \frac{3}{2} & -b \\ b & \frac{3}{2} \end{pmatrix} \] Calculating the elements: 1. First element: \(\left(\frac{3}{2}\right)^2 + b^2 = \frac{9}{4} + b^2\) 2. Second element: \(\frac{3}{2}(-b) + b\left(\frac{3}{2}\right) = 0\) 3. Third element: \(-b\left(\frac{3}{2}\right) + \frac{3}{2}b = 0\) 4. Fourth element: \((-b)^2 + \left(\frac{3}{2}\right)^2 = b^2 + \frac{9}{4}\) Thus, we have: \[ AA^T = \begin{pmatrix} \frac{9}{4} + b^2 & 0 \\ 0 & b^2 + \frac{9}{4} \end{pmatrix} \] Setting this equal to \(5I\): \[ \begin{pmatrix} \frac{9}{4} + b^2 & 0 \\ 0 & b^2 + \frac{9}{4} \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] This gives us two equations: 1. \(\frac{9}{4} + b^2 = 5\) 2. \(b^2 + \frac{9}{4} = 5\) ### Step 6: Solve for \(b^2\) From the first equation: \[ b^2 = 5 - \frac{9}{4} = \frac{20}{4} - \frac{9}{4} = \frac{11}{4} \] Thus, we have: \[ b = \pm \sqrt{\frac{11}{4}} = \pm \frac{\sqrt{11}}{2} \] ### Step 7: Determine the Number of Matrices Since \(b\) can take two values (\(\frac{\sqrt{11}}{2}\) and \(-\frac{\sqrt{11}}{2}\)), we can construct two distinct matrices \(A\): 1. For \(b = \frac{\sqrt{11}}{2}\): \[ A_1 = \begin{pmatrix} \frac{3}{2} & \frac{\sqrt{11}}{2} \\ -\frac{\sqrt{11}}{2} & \frac{3}{2} \end{pmatrix} \] 2. For \(b = -\frac{\sqrt{11}}{2}\): \[ A_2 = \begin{pmatrix} \frac{3}{2} & -\frac{\sqrt{11}}{2} \\ \frac{\sqrt{11}}{2} & \frac{3}{2} \end{pmatrix} \] Thus, the total number of such matrices \(A\) is **2**. ### Final Answer The number of \(2 \times 2\) matrices \(A\) with real entries that satisfy the given conditions is **2**.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 78

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 80

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

What is the total number of 2xx2 matrices with each entry 0 or 1 ?

The number of 2xx2 idempotent matrices with integer entries are (A) 1 (B) 2 (C) 3 (D) oo

The number of 2xx2 matrices A , that are there with the elements as real numbers satisfying A+A^(T)=I and A A^(T)=I is

The number of 3xx3 matrices with entries from the set {-1,0,1} such that the matrices symmetric nor skew symmetric is

If A, B are two non - singular matrices of order 3 and I is an identity matrix of order 3 such that "AA"^(T)=5I and 3A^(-)=2A^(T)-Aadj(4B) , then |B|^(2) is equal to (where A^(T) and adj(A) denote transpose and adjoint matrices of the matrix A respectively )

NTA MOCK TESTS-NTA JEE MOCK TEST 79-MATHEMATICS
  1. Three balls are marked with 2, 4 and 6. They are placed in a box and a...

    Text Solution

    |

  2. The number of 2xx2 matrices A with real entries, such that A+A^(T)=3I ...

    Text Solution

    |

  3. The sum of the intercepts of the plane on the coordinate axes, passing...

    Text Solution

    |

  4. If A(r)=[((1)/(r(r+1)),(1)/(3^(r ))),(2,3)], then lim(nrarroo)Sigma(r=...

    Text Solution

    |

  5. The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

    Text Solution

    |

  6. Negation of ''Monu is in class X or Anu is in class XII'' is

    Text Solution

    |

  7. The value of lim(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

    Text Solution

    |

  8. If f(x)=[x]tan(πx) then f ′(k ^+ ) is equal to (where k is some intege...

    Text Solution

    |

  9. Consider the integrals I=int(sinx)/(3cos x+4sinx)dx and J=int(cosx)/(3...

    Text Solution

    |

  10. If the area bounded by f(x)=tan^(3)x+tanx from x = 0 to x=(pi)/(4)is k...

    Text Solution

    |

  11. For the function f(x)=sin^(3)x-3sinx+4 AA x in [0, (pi)/(2)], which of...

    Text Solution

    |

  12. The curve satisfying the differential equation sin(x^(3))e^(y)dy+3x^(2...

    Text Solution

    |

  13. A possible three digit even number which can be formed with the condit...

    Text Solution

    |

  14. The discriminant of the quadratic (2x+1)^(2)+(3x+2)^(2)+(4x+3)^(2)+….n...

    Text Solution

    |

  15. Simplify P=1/(2sqrt(1)+sqrt(2))+1/(3sqrt(2)+2sqrt(3))+....+1/(100sqrt...

    Text Solution

    |

  16. The general solution of the equation sin^(2)x + cos^(2)3x =1 is equa...

    Text Solution

    |

  17. The line L(1):(x)/(5)+(y)/(b)=1 passes through the point (13, 32) and ...

    Text Solution

    |

  18. B&C are fixed points having co-ordinates (3,0) and (-3, 0) respectivel...

    Text Solution

    |

  19. The product of the slopes of the common tangents of the ellipse x^(2)+...

    Text Solution

    |

  20. For a complex number Z, if |Z-i|le2 and Z(1)=5+3i, then the maximum va...

    Text Solution

    |