Home
Class 12
MATHS
If A(r)=[((1)/(r(r+1)),(1)/(3^(r ))),(2,...

If `A_(r)=[((1)/(r(r+1)),(1)/(3^(r ))),(2,3)]`, then `lim_(nrarroo)Sigma_(r=1)^(n)|A_(r)|` is equal to

A

0

B

2

C

4

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit as \( n \) approaches infinity of the summation of the determinants of the matrix \( A_r \) from \( r = 1 \) to \( n \). ### Step-by-Step Solution: 1. **Define the Matrix \( A_r \)**: \[ A_r = \begin{pmatrix} \frac{1}{r(r+1)} & \frac{1}{3^r} \\ 2 & 3 \end{pmatrix} \] 2. **Calculate the Determinant of \( A_r \)**: The determinant of a \( 2 \times 2 \) matrix \( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by \( ad - bc \). Therefore, for our matrix: \[ |A_r| = \left(\frac{1}{r(r+1)} \cdot 3\right) - \left(2 \cdot \frac{1}{3^r}\right) \] Simplifying this gives: \[ |A_r| = \frac{3}{r(r+1)} - \frac{2}{3^r} \] 3. **Set Up the Summation**: We need to find: \[ \lim_{n \to \infty} \sum_{r=1}^{n} |A_r| = \lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{3}{r(r+1)} - \frac{2}{3^r}\right) \] 4. **Separate the Summation**: This can be separated into two summations: \[ \lim_{n \to \infty} \left( \sum_{r=1}^{n} \frac{3}{r(r+1)} - \sum_{r=1}^{n} \frac{2}{3^r} \right) \] 5. **Evaluate the First Summation**: The first summation can be simplified using the identity: \[ \frac{3}{r(r+1)} = 3\left(\frac{1}{r} - \frac{1}{r+1}\right) \] This is a telescoping series: \[ \sum_{r=1}^{n} \frac{3}{r(r+1)} = 3\left(1 - \frac{1}{n+1}\right) = \frac{3n}{n+1} \] 6. **Evaluate the Second Summation**: The second summation is a geometric series: \[ \sum_{r=1}^{n} \frac{2}{3^r} = 2 \left(\frac{1/3}{1 - 1/3}\right) = 2 \cdot \frac{1/3}{2/3} = 1 - \frac{2}{3^n} \] 7. **Combine the Results**: Now we combine the results of both summations: \[ \lim_{n \to \infty} \left( \frac{3n}{n+1} - \left(1 - \frac{2}{3^n}\right) \right) \] As \( n \to \infty \), \( \frac{3n}{n+1} \to 3 \) and \( \frac{2}{3^n} \to 0 \): \[ = 3 - 1 = 2 \] 8. **Final Result**: Therefore, the limit is: \[ \lim_{n \to \infty} \sum_{r=1}^{n} |A_r| = 2 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 78

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 80

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of I=lim_(nrarroo)Sigma_(r=1)^(n)(r)/(n^(2)+n+r) is equal to

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

The value of Sigma_(r=1)^(n) (a+r+ar)(-a)^r is equal to

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

Sigma_(r=0)^(n)((r^(2))/(r+1)).^(n)C_(r) is equal to

If S_(n)=Sigma_(r=1)^(n)t_(r)=(1)/(6)n(2n^(2)+9n+13) , then Sigma_(r=1)^(n)sqrt(t_(r)) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 79-MATHEMATICS
  1. The number of 2xx2 matrices A with real entries, such that A+A^(T)=3I ...

    Text Solution

    |

  2. The sum of the intercepts of the plane on the coordinate axes, passing...

    Text Solution

    |

  3. If A(r)=[((1)/(r(r+1)),(1)/(3^(r ))),(2,3)], then lim(nrarroo)Sigma(r=...

    Text Solution

    |

  4. The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

    Text Solution

    |

  5. Negation of ''Monu is in class X or Anu is in class XII'' is

    Text Solution

    |

  6. The value of lim(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

    Text Solution

    |

  7. If f(x)=[x]tan(πx) then f ′(k ^+ ) is equal to (where k is some intege...

    Text Solution

    |

  8. Consider the integrals I=int(sinx)/(3cos x+4sinx)dx and J=int(cosx)/(3...

    Text Solution

    |

  9. If the area bounded by f(x)=tan^(3)x+tanx from x = 0 to x=(pi)/(4)is k...

    Text Solution

    |

  10. For the function f(x)=sin^(3)x-3sinx+4 AA x in [0, (pi)/(2)], which of...

    Text Solution

    |

  11. The curve satisfying the differential equation sin(x^(3))e^(y)dy+3x^(2...

    Text Solution

    |

  12. A possible three digit even number which can be formed with the condit...

    Text Solution

    |

  13. The discriminant of the quadratic (2x+1)^(2)+(3x+2)^(2)+(4x+3)^(2)+….n...

    Text Solution

    |

  14. Simplify P=1/(2sqrt(1)+sqrt(2))+1/(3sqrt(2)+2sqrt(3))+....+1/(100sqrt...

    Text Solution

    |

  15. The general solution of the equation sin^(2)x + cos^(2)3x =1 is equa...

    Text Solution

    |

  16. The line L(1):(x)/(5)+(y)/(b)=1 passes through the point (13, 32) and ...

    Text Solution

    |

  17. B&C are fixed points having co-ordinates (3,0) and (-3, 0) respectivel...

    Text Solution

    |

  18. The product of the slopes of the common tangents of the ellipse x^(2)+...

    Text Solution

    |

  19. For a complex number Z, if |Z-i|le2 and Z(1)=5+3i, then the maximum va...

    Text Solution

    |

  20. Consider a parabola y^(2)=4x with vertex at A and focus at S. PQ is a ...

    Text Solution

    |