Home
Class 12
MATHS
Let veca and vecb are vectors such that ...

Let `veca and vecb` are vectors such that `|veca|=2, |vecb|=3 and veca. vecb=4`. If `vecc=(3veca xx vecb)-4vecb`, then `|vecc|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector \(\vec{c}\) defined as \(\vec{c} = 3(\vec{a} \times \vec{b}) - 4\vec{b}\), we will follow these steps: ### Step 1: Calculate the magnitude of \(\vec{a} \times \vec{b}\) The magnitude of the cross product of two vectors can be calculated using the formula: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] where \(\theta\) is the angle between the vectors \(\vec{a}\) and \(\vec{b}\). Given: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 3\) - \(\vec{a} \cdot \vec{b} = 4\) We can find \(\cos \theta\) using the dot product formula: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Substituting the known values: \[ 4 = 2 \cdot 3 \cdot \cos \theta \implies 4 = 6 \cos \theta \implies \cos \theta = \frac{2}{3} \] Now, we can find \(\sin \theta\) using the identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] \[ \sin^2 \theta = 1 - \left(\frac{2}{3}\right)^2 = 1 - \frac{4}{9} = \frac{5}{9} \implies \sin \theta = \frac{\sqrt{5}}{3} \] Now substituting back to find \(|\vec{a} \times \vec{b}|\): \[ |\vec{a} \times \vec{b}| = 2 \cdot 3 \cdot \frac{\sqrt{5}}{3} = 2\sqrt{5} \] ### Step 2: Calculate \(|\vec{c}|\) Now we can substitute \(|\vec{a} \times \vec{b}|\) into the expression for \(\vec{c}\): \[ \vec{c} = 3(\vec{a} \times \vec{b}) - 4\vec{b} \] To find \(|\vec{c}|\), we use the formula for the magnitude of the difference of two vectors: \[ |\vec{c}|^2 = |3(\vec{a} \times \vec{b}) - 4\vec{b}|^2 \] Using the property of magnitudes: \[ |\vec{c}|^2 = |3(\vec{a} \times \vec{b})|^2 + |-4\vec{b}|^2 - 2 \cdot |3(\vec{a} \times \vec{b})| \cdot |-4\vec{b}| \cdot \cos \phi \] where \(\phi\) is the angle between \(3(\vec{a} \times \vec{b})\) and \(-4\vec{b}\). Since \(\vec{a} \times \vec{b}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\), \(\phi = 90^\circ\) and \(\cos \phi = 0\). Calculating the magnitudes: \[ |3(\vec{a} \times \vec{b})| = 3 \cdot 2\sqrt{5} = 6\sqrt{5} \] \[ |-4\vec{b}| = 4 \cdot 3 = 12 \] Now substituting back: \[ |\vec{c}|^2 = (6\sqrt{5})^2 + (12)^2 \] \[ = 180 + 144 = 324 \] Finally, taking the square root gives us: \[ |\vec{c}| = \sqrt{324} = 18 \] ### Final Answer Thus, the magnitude of \(\vec{c}\) is \(\boxed{18}\).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 78

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 80

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two vectors such that |veca|=1, |vecb|=4, veca.vecb=2 . If vecc=(2veca xx vecb)-3vecb , then the angle between veca and vecc is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vec|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

Let veca,vecb and vecc are vectors such that |veca|=3,|vecb|=4and |vecc|=5, and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendiculatr to veca and (vecc+veca) is perpendicular to vecb . Then find the value of |veca+vecb+vecc| .

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If veca, vecb and vecc are vectors such that veca. vecb = veca.vecc, veca xx vecb = veca xx vecc, a ne 0. then show that vecb = vecc.

If veca, vecb and vecc are three vectors, such that |veca|=2, |vecb|=3, |vecc|=4, veca. vecc=0, veca. vecb=0 and the angle between vecb and vecc is (pi)/(3) , then the value of |veca xx (2vecb - 3 vecc)| is equal to

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

NTA MOCK TESTS-NTA JEE MOCK TEST 79-MATHEMATICS
  1. Negation of ''Monu is in class X or Anu is in class XII'' is

    Text Solution

    |

  2. The value of lim(xrarr0)(cos x+sin bx)^((a)/(x)) is equal to

    Text Solution

    |

  3. If f(x)=[x]tan(πx) then f ′(k ^+ ) is equal to (where k is some intege...

    Text Solution

    |

  4. Consider the integrals I=int(sinx)/(3cos x+4sinx)dx and J=int(cosx)/(3...

    Text Solution

    |

  5. If the area bounded by f(x)=tan^(3)x+tanx from x = 0 to x=(pi)/(4)is k...

    Text Solution

    |

  6. For the function f(x)=sin^(3)x-3sinx+4 AA x in [0, (pi)/(2)], which of...

    Text Solution

    |

  7. The curve satisfying the differential equation sin(x^(3))e^(y)dy+3x^(2...

    Text Solution

    |

  8. A possible three digit even number which can be formed with the condit...

    Text Solution

    |

  9. The discriminant of the quadratic (2x+1)^(2)+(3x+2)^(2)+(4x+3)^(2)+….n...

    Text Solution

    |

  10. Simplify P=1/(2sqrt(1)+sqrt(2))+1/(3sqrt(2)+2sqrt(3))+....+1/(100sqrt...

    Text Solution

    |

  11. The general solution of the equation sin^(2)x + cos^(2)3x =1 is equa...

    Text Solution

    |

  12. The line L(1):(x)/(5)+(y)/(b)=1 passes through the point (13, 32) and ...

    Text Solution

    |

  13. B&C are fixed points having co-ordinates (3,0) and (-3, 0) respectivel...

    Text Solution

    |

  14. The product of the slopes of the common tangents of the ellipse x^(2)+...

    Text Solution

    |

  15. For a complex number Z, if |Z-i|le2 and Z(1)=5+3i, then the maximum va...

    Text Solution

    |

  16. Consider a parabola y^(2)=4x with vertex at A and focus at S. PQ is a ...

    Text Solution

    |

  17. if sum(k)/(k+1)*"^100Ck=(a *2^100+b)/c where a,b,c in N then find the...

    Text Solution

    |

  18. The value of the integral I=int(0)^((pi)/(2))(sin^(3)x -cos^(3)x)/(1+s...

    Text Solution

    |

  19. If sqrt(x+y)+sqrt(y-x)=2, then the value of (d^(2)y)/(dx^(2)) is equal...

    Text Solution

    |

  20. Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. v...

    Text Solution

    |