Home
Class 12
MATHS
The value of lim(xrarroo)[(e^(2))/((1+(2...

The value of `lim_(xrarroo)[(e^(2))/((1+(2)/(x))^(x))]^((x)/(2))` is equal to

A

e

B

`e^(-1)`

C

`e^((1)/(2))`

D

`e^(-(1)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to \infty} \left( \frac{e^2}{\left(1 + \frac{2}{x}\right)^x} \right)^{\frac{x}{2}} \), we will follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ L = \lim_{x \to \infty} \left( \frac{e^2}{\left(1 + \frac{2}{x}\right)^x} \right)^{\frac{x}{2}} \] ### Step 2: Simplify the expression inside the limit As \( x \to \infty \), \( \frac{2}{x} \to 0 \). Therefore, we can rewrite the limit as: \[ L = \lim_{x \to \infty} \left( e^2 \cdot \left(1 + \frac{2}{x}\right)^{-x} \right)^{\frac{x}{2}} \] ### Step 3: Take the natural logarithm To simplify the limit, we take the natural logarithm: \[ \ln L = \lim_{x \to \infty} \frac{x}{2} \left( \ln(e^2) - x \ln\left(1 + \frac{2}{x}\right) \right) \] Since \( \ln(e^2) = 2 \). ### Step 4: Expand \( \ln(1 + \frac{2}{x}) \) Using the Taylor series expansion for \( \ln(1 + u) \) where \( u = \frac{2}{x} \): \[ \ln\left(1 + \frac{2}{x}\right) \approx \frac{2}{x} - \frac{1}{2}\left(\frac{2}{x}\right)^2 + O\left(\frac{1}{x^3}\right) \] Thus, we have: \[ \ln\left(1 + \frac{2}{x}\right) \approx \frac{2}{x} \quad \text{as } x \to \infty \] ### Step 5: Substitute back into the limit Now substituting this back into our expression for \( \ln L \): \[ \ln L = \lim_{x \to \infty} \frac{x}{2} \left( 2 - x \cdot \frac{2}{x} \right) = \lim_{x \to \infty} \frac{x}{2} \left( 2 - 2 \right) = \lim_{x \to \infty} \frac{x}{2} \cdot 0 = 0 \] ### Step 6: Solve for \( L \) Since \( \ln L = 0 \), we have: \[ L = e^0 = 1 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 79

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 81

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo)[(e^(2))/((1+(2)/(x))^(x))]^(x) is equal to

The value of lim_(xrarroo) x^(2)(1-cos.(1)/(x)) is

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

lim_(xrarroo) (2x)/(1+4x)

The value of lim_(xrarroo)(e^(x+1)log(x^(3)e^(-x)+1))/(sin^(3)(2x)) is equal to (Use e = 2.7)

The value of lim_(xrarroo) (sinx)/(x) , is

The value of lim_(xrarroo)((x^2 +2x+3)/(2x^2+x+5))^((3x+2)/(3x+2)) , is

The value of lim_(xrarroo) ((x+3)/(x-1))^(x+1) is

The value of lim_(xrarroo) ((x-1)/(x+1))^(x) , is

NTA MOCK TESTS-NTA JEE MOCK TEST 80-MATHEMATICS
  1. If f: R->R ,f(x)=(alphax^2+6x-8)/(alpha+6x-8x^2) is onto then alpha in

    Text Solution

    |

  2. The compound statement (phArr q)vv(p hArr ~q) is logically equivalent ...

    Text Solution

    |

  3. The value of lim(xrarroo)[(e^(2))/((1+(2)/(x))^(x))]^((x)/(2)) is equa...

    Text Solution

    |

  4. The mean of n items is bar(x). If the first item is increased by n, se...

    Text Solution

    |

  5. If [sin^(-1)x]^(2)-2[sin^(-1)x]+1le0 (where, [.] represents the greate...

    Text Solution

    |

  6. If the number of integral of solutions of x+y+z+w lt 25 are .^(23)C(la...

    Text Solution

    |

  7. From a point P(3, 3) on the circle x^(2)+y^(2)=18 two chords PQ and PR...

    Text Solution

    |

  8. The number of solutions of the equation (3+cos x)^(2)=4-2sin^(8)x" in ...

    Text Solution

    |

  9. If A and B are two events defined on a sample space with the probabili...

    Text Solution

    |

  10. Let 2x+ay+6z=8, x+2y+bz=5 and x+y+3z=4 be three equations. If these 3 ...

    Text Solution

    |

  11. Let the equation of a line is (x-2)/(1)=(y-3)/(2)=(z-4)/(3). An insect...

    Text Solution

    |

  12. Let A=[(a, b),(c, a)]AA a, b, c, in {0, 1, 2}. If A is a singular matr...

    Text Solution

    |

  13. int(dx/((x+100) sqrt(x+99))) = f(x) +c then findf(-99)

    Text Solution

    |

  14. The number of tangents that can be drawn to y=e^(x) from (pi, 0) is

    Text Solution

    |

  15. The area bounded by y=(x^(2)-x)^(2) with the x - axis, between its two...

    Text Solution

    |

  16. The curve passing through P(pi^(2),pi) is such that for a tangent draw...

    Text Solution

    |

  17. The sum of all the values of p for which the lines x+y-1=0, px+4y+2=0 ...

    Text Solution

    |

  18. If 11 arithmetic means are inserted between 20 and 10, the number of i...

    Text Solution

    |

  19. If x^(2)+y^(2)=a^(2) and (x^(2))/(16)+(y^(2))/(9)=1 intersect at 4 poi...

    Text Solution

    |

  20. the minimum value of |8Z-8|+|2Z-4| exists, when Z is equal to (where, ...

    Text Solution

    |