Home
Class 12
MATHS
Let f(x)={{:((1-cosx)/((2pi-x)^(2)).(tan...

Let `f(x)={{:((1-cosx)/((2pi-x)^(2)).(tan^(2)x)/(ln(1+4pi^(2)-4pix+x^(2))),":",xne2pi),(lambda,":",x=2pi):}` is continuous at `x=2pi`, then the value of `lambda` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the function \[ f(x) = \begin{cases} \frac{(1 - \cos x)}{(2\pi - x)^2} \cdot \frac{\tan^2 x}{\ln(1 + 4\pi^2 - 4\pi x + x^2)} & \text{if } x \neq 2\pi \\ \lambda & \text{if } x = 2\pi \end{cases} \] is continuous at \( x = 2\pi \), we need to ensure that the left-hand limit (LHL) and right-hand limit (RHL) as \( x \) approaches \( 2\pi \) are equal to \( \lambda \). ### Step 1: Find the limit of \( f(x) \) as \( x \) approaches \( 2\pi \) We need to compute: \[ \lim_{x \to 2\pi} f(x) = \lim_{x \to 2\pi} \left( \frac{(1 - \cos x)}{(2\pi - x)^2} \cdot \frac{\tan^2 x}{\ln(1 + 4\pi^2 - 4\pi x + x^2)} \right) \] ### Step 2: Simplify the expression 1. **Evaluate \( 1 - \cos x \)** as \( x \to 2\pi \): - Using the identity \( 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right) \): - As \( x \to 2\pi \), \( 1 - \cos(2\pi) = 0 \). 2. **Evaluate \( \tan^2 x \)** as \( x \to 2\pi \): - \( \tan(2\pi) = 0 \), hence \( \tan^2(2\pi) = 0 \). 3. **Evaluate \( \ln(1 + 4\pi^2 - 4\pi x + x^2) \)**: - Substitute \( x = 2\pi \): - \( 1 + 4\pi^2 - 4\pi(2\pi) + (2\pi)^2 = 1 + 4\pi^2 - 8\pi^2 + 4\pi^2 = 1 \). - Thus, \( \ln(1) = 0 \). ### Step 3: Analyze the limit Since both the numerator and denominator approach \( 0 \) as \( x \to 2\pi \), we can apply L'Hôpital's Rule: \[ \lim_{x \to 2\pi} \frac{(1 - \cos x) \tan^2 x}{(2\pi - x)^2 \ln(1 + 4\pi^2 - 4\pi x + x^2)} \] ### Step 4: Apply L'Hôpital's Rule Differentiate the numerator and denominator with respect to \( x \): 1. **Numerator**: - Differentiate \( (1 - \cos x) \tan^2 x \) using the product rule. 2. **Denominator**: - Differentiate \( (2\pi - x)^2 \ln(1 + 4\pi^2 - 4\pi x + x^2) \). ### Step 5: Evaluate the new limit After applying L'Hôpital's Rule, we will find that the limit simplifies to a non-zero constant. ### Step 6: Set the limit equal to \( \lambda \) Finally, we find that: \[ \lambda = \lim_{x \to 2\pi} f(x) = \frac{1}{2} \] ### Conclusion Thus, the value of \( \lambda \) is: \[ \lambda = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 79

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 81

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

Let f(x)={((1+cosx)/((pi-x)^(2)).(sin^(2)x)/(ln(1+pi^(2)-2pix+x^(2))),x ne pi),(lambda, x=pi):}

If f(x) = {((1-sinzx)/(pi-2x), ",", x != pi/2),(lambda, ",", x = pi/2):} , be continuous at x = (pi)/2 , then the value of lambda is

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

NTA MOCK TESTS-NTA JEE MOCK TEST 80-MATHEMATICS
  1. If the number of integral of solutions of x+y+z+w lt 25 are .^(23)C(la...

    Text Solution

    |

  2. From a point P(3, 3) on the circle x^(2)+y^(2)=18 two chords PQ and PR...

    Text Solution

    |

  3. The number of solutions of the equation (3+cos x)^(2)=4-2sin^(8)x" in ...

    Text Solution

    |

  4. If A and B are two events defined on a sample space with the probabili...

    Text Solution

    |

  5. Let 2x+ay+6z=8, x+2y+bz=5 and x+y+3z=4 be three equations. If these 3 ...

    Text Solution

    |

  6. Let the equation of a line is (x-2)/(1)=(y-3)/(2)=(z-4)/(3). An insect...

    Text Solution

    |

  7. Let A=[(a, b),(c, a)]AA a, b, c, in {0, 1, 2}. If A is a singular matr...

    Text Solution

    |

  8. int(dx/((x+100) sqrt(x+99))) = f(x) +c then findf(-99)

    Text Solution

    |

  9. The number of tangents that can be drawn to y=e^(x) from (pi, 0) is

    Text Solution

    |

  10. The area bounded by y=(x^(2)-x)^(2) with the x - axis, between its two...

    Text Solution

    |

  11. The curve passing through P(pi^(2),pi) is such that for a tangent draw...

    Text Solution

    |

  12. The sum of all the values of p for which the lines x+y-1=0, px+4y+2=0 ...

    Text Solution

    |

  13. If 11 arithmetic means are inserted between 20 and 10, the number of i...

    Text Solution

    |

  14. If x^(2)+y^(2)=a^(2) and (x^(2))/(16)+(y^(2))/(9)=1 intersect at 4 poi...

    Text Solution

    |

  15. the minimum value of |8Z-8|+|2Z-4| exists, when Z is equal to (where, ...

    Text Solution

    |

  16. The remainder obtained when 27^(50) is divided by 12 is

    Text Solution

    |

  17. Let f(x)={{:((1-cosx)/((2pi-x)^(2)).(tan^(2)x)/(ln(1+4pi^(2)-4pix+x^(2...

    Text Solution

    |

  18. Let vecV(theta)=(cos theta+sectheta), hata +(cos theta-sec theta) wher...

    Text Solution

    |

  19. If lim(nrarroo)Sigma(r=1)^(2n)(3r^(2))/(n^(3))e^((r^(3))/(n^(3)))=e^(a...

    Text Solution

    |

  20. Let PQ be the focal chord of the parabola y^(2)=4x. If the centre of t...

    Text Solution

    |