Home
Class 12
MATHS
Let vecV(theta)=(cos theta+sectheta), ha...

Let `vecV(theta)=(cos theta+sectheta), hata +(cos theta-sec theta)` where `hata` and `hatb` are unit vectors and the angle between `hata` and `vecg` is `60^(@)`, then the minimum value of `|vecV|^(4)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of \( |\vec{V}|^4 \) where \[ \vec{V}(\theta) = (\cos \theta + \sec \theta) \hat{a} + (\cos \theta - \sec \theta) \hat{b} \] and the angle between the unit vectors \( \hat{a} \) and \( \hat{b} \) is \( 60^\circ \). ### Step 1: Calculate the Magnitude of \( \vec{V} \) The magnitude of \( \vec{V} \) can be calculated using the formula for the magnitude of a vector: \[ |\vec{V}| = \sqrt{(\cos \theta + \sec \theta)^2 + (\cos \theta - \sec \theta)^2 + 2(\cos \theta + \sec \theta)(\cos \theta - \sec \theta) \cos(60^\circ)} \] ### Step 2: Simplify the Expression Using \( \cos(60^\circ) = \frac{1}{2} \): \[ |\vec{V}| = \sqrt{(\cos \theta + \sec \theta)^2 + (\cos \theta - \sec \theta)^2 + (\cos \theta + \sec \theta)(\cos \theta - \sec \theta)} \] ### Step 3: Expand the Squares Expanding the squares: \[ (\cos \theta + \sec \theta)^2 = \cos^2 \theta + 2\cos \theta \sec \theta + \sec^2 \theta \] \[ (\cos \theta - \sec \theta)^2 = \cos^2 \theta - 2\cos \theta \sec \theta + \sec^2 \theta \] Adding these gives: \[ 2\cos^2 \theta + 2\sec^2 \theta \] ### Step 4: Combine Terms Now, combine the terms: \[ |\vec{V}|^2 = 2\cos^2 \theta + 2\sec^2 \theta + (\cos^2 \theta - \sec^2 \theta) \] This simplifies to: \[ |\vec{V}|^2 = 3\cos^2 \theta + \sec^2 \theta \] ### Step 5: Substitute \( \sec^2 \theta \) Recall that \( \sec^2 \theta = 1 + \tan^2 \theta \): \[ |\vec{V}|^2 = 3\cos^2 \theta + 1 + \tan^2 \theta \] ### Step 6: Find Minimum Value To find the minimum value of \( |\vec{V}|^4 \), we need to minimize \( |\vec{V}|^2 \): Let \( x = \cos^2 \theta \), then \( \tan^2 \theta = \frac{1 - x}{x} \): \[ |\vec{V}|^2 = 3x + 1 + \frac{1 - x}{x} \] ### Step 7: Differentiate and Solve To find the minimum, differentiate and set the derivative to zero: \[ \frac{d}{dx}(3x + 1 + \frac{1 - x}{x}) = 3 - \frac{1}{x^2} = 0 \] Solving gives: \[ 3x^2 - 1 = 0 \implies x^2 = \frac{1}{3} \implies x = \frac{1}{\sqrt{3}} \] ### Step 8: Calculate Minimum Value Substituting back to find \( |\vec{V}|^2 \): \[ |\vec{V}|^2 = 3 \cdot \frac{1}{3} + 1 + 1 = 2 \] Thus, \[ |\vec{V}|^4 = (|\vec{V}|^2)^2 = 2^2 = 4 \] ### Final Answer The minimum value of \( |\vec{V}|^4 \) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 79

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 81

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If hata and hatb are unit vectors and theta is the angle between them show that sin (theta/2)= 1/2 |hata-hatb|

If cos2 theta=sin4 theta, where 2 theta and 4 theta are acute angles,find the value of theta.

The minimum value of 8(cos2 theta+cos theta) is equal to

If cos theta+sec theta=2 then the value of cos10 theta+sec11 theta is

If hata,hatb and hatc are three unit vectors inclined to each other at an angle theta . The maximum value of theta is

(cos theta cosec theta-sin theta sec theta)/(cos theta+sin theta)=cosec theta-sec theta

What is the value of (sin theta)/(cosec theta)+(cos theta)/(sec theta) ?

Let hat(a), hat(b) be two unit vectors and theta be the angle between them. What is cos ((theta)/(2)) equal to ?

NTA MOCK TESTS-NTA JEE MOCK TEST 80-MATHEMATICS
  1. If the number of integral of solutions of x+y+z+w lt 25 are .^(23)C(la...

    Text Solution

    |

  2. From a point P(3, 3) on the circle x^(2)+y^(2)=18 two chords PQ and PR...

    Text Solution

    |

  3. The number of solutions of the equation (3+cos x)^(2)=4-2sin^(8)x" in ...

    Text Solution

    |

  4. If A and B are two events defined on a sample space with the probabili...

    Text Solution

    |

  5. Let 2x+ay+6z=8, x+2y+bz=5 and x+y+3z=4 be three equations. If these 3 ...

    Text Solution

    |

  6. Let the equation of a line is (x-2)/(1)=(y-3)/(2)=(z-4)/(3). An insect...

    Text Solution

    |

  7. Let A=[(a, b),(c, a)]AA a, b, c, in {0, 1, 2}. If A is a singular matr...

    Text Solution

    |

  8. int(dx/((x+100) sqrt(x+99))) = f(x) +c then findf(-99)

    Text Solution

    |

  9. The number of tangents that can be drawn to y=e^(x) from (pi, 0) is

    Text Solution

    |

  10. The area bounded by y=(x^(2)-x)^(2) with the x - axis, between its two...

    Text Solution

    |

  11. The curve passing through P(pi^(2),pi) is such that for a tangent draw...

    Text Solution

    |

  12. The sum of all the values of p for which the lines x+y-1=0, px+4y+2=0 ...

    Text Solution

    |

  13. If 11 arithmetic means are inserted between 20 and 10, the number of i...

    Text Solution

    |

  14. If x^(2)+y^(2)=a^(2) and (x^(2))/(16)+(y^(2))/(9)=1 intersect at 4 poi...

    Text Solution

    |

  15. the minimum value of |8Z-8|+|2Z-4| exists, when Z is equal to (where, ...

    Text Solution

    |

  16. The remainder obtained when 27^(50) is divided by 12 is

    Text Solution

    |

  17. Let f(x)={{:((1-cosx)/((2pi-x)^(2)).(tan^(2)x)/(ln(1+4pi^(2)-4pix+x^(2...

    Text Solution

    |

  18. Let vecV(theta)=(cos theta+sectheta), hata +(cos theta-sec theta) wher...

    Text Solution

    |

  19. If lim(nrarroo)Sigma(r=1)^(2n)(3r^(2))/(n^(3))e^((r^(3))/(n^(3)))=e^(a...

    Text Solution

    |

  20. Let PQ be the focal chord of the parabola y^(2)=4x. If the centre of t...

    Text Solution

    |