Home
Class 12
MATHS
If a, b, c in R^(+) such that a+b+c=27, ...

If `a, b, c in R^(+)` such that `a+b+c=27`, then the maximum value of `a^(2)b^(3)c^(4)` is equal to

A

`2^(8). 3^(10)`

B

`2^(9).3^(12)`

C

`2^(10).3^(12)`

D

`2^(11).3^(13)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( a^2 b^3 c^4 \) given the constraint \( a + b + c = 27 \) and \( a, b, c \in \mathbb{R}^+ \), we can use the method of Lagrange multipliers or apply the AM-GM inequality. Here, we will use the AM-GM inequality. ### Step-by-Step Solution: 1. **Set Up the Problem**: We want to maximize the expression \( a^2 b^3 c^4 \) under the constraint \( a + b + c = 27 \). 2. **Apply the AM-GM Inequality**: According to the AM-GM inequality, for any non-negative real numbers \( x_1, x_2, \ldots, x_n \): \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \] We can apply this to the terms \( a, a, b, b, b, c, c, c, c \) (where \( a \) appears twice, \( b \) three times, and \( c \) four times). 3. **Calculate the Arithmetic Mean**: The total number of terms is \( 2 + 3 + 4 = 9 \). Therefore, we have: \[ \frac{a + a + b + b + b + c + c + c + c}{9} = \frac{2a + 3b + 4c}{9} \] By the AM-GM inequality: \[ \frac{2a + 3b + 4c}{9} \geq \sqrt[9]{a^2 b^3 c^4} \] 4. **Substituting the Constraint**: Since \( a + b + c = 27 \), we can express \( 2a + 3b + 4c \) in terms of \( a + b + c \): \[ 2a + 3b + 4c = 2a + 3b + 4(27 - a - b) = 2a + 3b + 108 - 4a - 4b = -2a - b + 108 \] Thus, we have: \[ \frac{-2a - b + 108}{9} \geq \sqrt[9]{a^2 b^3 c^4} \] 5. **Finding the Maximum Value**: To maximize \( a^2 b^3 c^4 \), we need to find the equality condition in the AM-GM inequality, which occurs when: \[ a = a = b = b = b = c = c = c = c \] Let \( a = 2k \), \( b = 3k \), and \( c = 4k \). Then: \[ 2k + 3k + 4k = 27 \implies 9k = 27 \implies k = 3 \] Therefore: \[ a = 6, \quad b = 9, \quad c = 12 \] 6. **Calculate the Maximum Value**: Now substitute \( a, b, c \) back into the expression: \[ a^2 b^3 c^4 = 6^2 \cdot 9^3 \cdot 12^4 \] Calculate each term: \[ 6^2 = 36, \quad 9^3 = 729, \quad 12^4 = 20736 \] Now multiply: \[ 36 \cdot 729 \cdot 20736 \] Calculate step by step: \[ 36 \cdot 729 = 26244 \] Then: \[ 26244 \cdot 20736 = 544864320 \] Thus, the maximum value of \( a^2 b^3 c^4 \) is \( 544864320 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 80

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 82

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If a,b,c in R^(+) such that a+b+c=21 then the maximum value of a^(2)b^(3)c^(2) is equal to

If a,b,c,d in R^(+) such that a+b+c=18 then the maximum value of a^(2)b^(3)c^(4) is equal to 2^(18)xx3^(2)2^(18)xx3^(3)2^(19)xx3^(2)2^(18)xx3^(3)

If a,b,c,in R^(+) , such that a+b+c=18 , then the maximum value of a^2,b^3,c^4 is equal to

If a,b,c are positive real numbers such that a +b+c=18, find the maximum value of a^(2)b^(3)c^(4)

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If abc=8;a,b,c in R^(+) then the minimum value of a^(2)+b^(2)+c^(2)+ab+bc+ca is equal to

If a,b,c in R^(+), then the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) is equal to (a)abc (b)2abc (c)3abc (d)6abc

If a,b and c are unit vectors, then the maximum value of |a-b|^(2)+|b-c|^(2)+|c-a|^(2) is?

NTA MOCK TESTS-NTA JEE MOCK TEST 81-MATHEMATICS
  1. If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (wher...

    Text Solution

    |

  2. The number of ways of arranging the letters AAAAA, BBB, CCC, D, EE and...

    Text Solution

    |

  3. If a, b, c in R^(+) such that a+b+c=27, then the maximum value of a^(2...

    Text Solution

    |

  4. Find the degrees and radians the angle between the hour hand and the ...

    Text Solution

    |

  5. If f(x)=2sinx-x^(2), then in x in [0, pi]

    Text Solution

    |

  6. 15 coins are tossed. If the probability of getting at least 8 heads is...

    Text Solution

    |

  7. A normal line with positive direction cosines to the plane P makes equ...

    Text Solution

    |

  8. Let A=[a(ij)](3xx3) be a scalar matrix whose elements are the roots of...

    Text Solution

    |

  9. For three non - zero vectors veca, vecb and vecc, if [(veca, vecb , ve...

    Text Solution

    |

  10. Let f:[-1,1] rArr B be a function defined as f(x)=cot^(-1)(cot((2x)/(...

    Text Solution

    |

  11. If p, q are r are three logical statements, then the truth value of th...

    Text Solution

    |

  12. If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):}, t...

    Text Solution

    |

  13. The set (AuuBuuC)nn(AnnB'nnC')' is equal to

    Text Solution

    |

  14. Let the circumcentre of DeltaABC is S(-1, 0) and the midpoints of the ...

    Text Solution

    |

  15. For a DeltaABC the vertices are A(0, 3), B(0, 12) and C(x, 0). If the ...

    Text Solution

    |

  16. The solution of the differential equation ((dy)/(dx))^(4)-((dy)/(dx))^...

    Text Solution

    |

  17. For the complex number z satisfying the condition |z+(2)/(z)|=2, the m...

    Text Solution

    |

  18. If the area bounded by y le e -|x-e| and y ge 0 is A sq. units, then l...

    Text Solution

    |

  19. If the middle term in the expansion of ((1)/(x)+x sinx)^(10) is equal ...

    Text Solution

    |

  20. Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A, th...

    Text Solution

    |