Home
Class 12
MATHS
For three non - zero vectors veca, vecb ...

For three non - zero vectors `veca, vecb and vecc`, if `[(veca, vecb , vecc)]=4`, then `[(vecaxx(vecb+2vecc), vecbxx(vecc-3veca), vecc xx(3veca+vecb))]`is equal to

A

12

B

16

C

84

D

144

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given the scalar triple product of three non-zero vectors \(\vec{a}, \vec{b}, \vec{c}\) is equal to 4. The expression we need to evaluate is: \[ [(\vec{a} \times (\vec{b} + 2\vec{c}), \vec{b} \times (\vec{c} - 3\vec{a}), \vec{c} \times (3\vec{a} + \vec{b}))] \] ### Step 1: Expand the Cross Products First, we will expand each of the cross products in the expression: 1. \(\vec{a} \times (\vec{b} + 2\vec{c}) = \vec{a} \times \vec{b} + 2\vec{a} \times \vec{c}\) 2. \(\vec{b} \times (\vec{c} - 3\vec{a}) = \vec{b} \times \vec{c} - 3\vec{b} \times \vec{a}\) 3. \(\vec{c} \times (3\vec{a} + \vec{b}) = 3\vec{c} \times \vec{a} + \vec{c} \times \vec{b}\) ### Step 2: Substitute Back into the Expression Now we substitute these expansions back into the expression: \[ [(\vec{a} \times \vec{b} + 2\vec{a} \times \vec{c}), (\vec{b} \times \vec{c} - 3\vec{b} \times \vec{a}), (3\vec{c} \times \vec{a} + \vec{c} \times \vec{b})] \] ### Step 3: Rearranging the Terms Now we can rearrange the terms to group similar vectors: \[ [(\vec{a} \times \vec{b}), (\vec{b} \times \vec{c}), (3\vec{c} \times \vec{a})] + 2[(\vec{a} \times \vec{c}), (-3\vec{b} \times \vec{a}), (\vec{c} \times \vec{b})] \] ### Step 4: Use Properties of Determinants Using the properties of determinants and the scalar triple product, we can express this determinant as: \[ = [\vec{a}, \vec{b}, \vec{c}] + 2 \cdot [\vec{a}, \vec{c}, \vec{b}] + 3 \cdot [\vec{c}, \vec{a}, \vec{b}] \] ### Step 5: Simplifying the Expression We know that the scalar triple product is invariant under cyclic permutations, so we can write: \[ = [\vec{a}, \vec{b}, \vec{c}] + 2 \cdot [\vec{a}, \vec{b}, \vec{c}] + 3 \cdot [\vec{a}, \vec{b}, \vec{c}] \] This simplifies to: \[ = (1 + 2 + 3) \cdot [\vec{a}, \vec{b}, \vec{c}] = 6 \cdot [\vec{a}, \vec{b}, \vec{c}] \] ### Step 6: Substitute the Given Value Given that \([\vec{a}, \vec{b}, \vec{c}] = 4\), we substitute this value in: \[ = 6 \cdot 4 = 24 \] ### Final Result Thus, the value of the expression is: \[ \boxed{24} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 80

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 82

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

If veca, vecb, vecc are three non-zero non-null vectors are vecr is any vector in space then [(vecb, vecc, vecr)]veca+[(vecc, veca, vecr)]vecb+[(veca, vecb, vecr)]vecc is equal to

If veca,vecb, vecc are three vectors such that veca + vecb +vecc =vec0, |veca| =1 |vecb| =2, | vecc| =3 , then veca.vecb + vecb .vecc +vecc + vecc.veca is equal to

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

NTA MOCK TESTS-NTA JEE MOCK TEST 81-MATHEMATICS
  1. If a, b, c in R^(+) such that a+b+c=27, then the maximum value of a^(2...

    Text Solution

    |

  2. Find the degrees and radians the angle between the hour hand and the ...

    Text Solution

    |

  3. If f(x)=2sinx-x^(2), then in x in [0, pi]

    Text Solution

    |

  4. 15 coins are tossed. If the probability of getting at least 8 heads is...

    Text Solution

    |

  5. A normal line with positive direction cosines to the plane P makes equ...

    Text Solution

    |

  6. Let A=[a(ij)](3xx3) be a scalar matrix whose elements are the roots of...

    Text Solution

    |

  7. For three non - zero vectors veca, vecb and vecc, if [(veca, vecb , ve...

    Text Solution

    |

  8. Let f:[-1,1] rArr B be a function defined as f(x)=cot^(-1)(cot((2x)/(...

    Text Solution

    |

  9. If p, q are r are three logical statements, then the truth value of th...

    Text Solution

    |

  10. If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):}, t...

    Text Solution

    |

  11. The set (AuuBuuC)nn(AnnB'nnC')' is equal to

    Text Solution

    |

  12. Let the circumcentre of DeltaABC is S(-1, 0) and the midpoints of the ...

    Text Solution

    |

  13. For a DeltaABC the vertices are A(0, 3), B(0, 12) and C(x, 0). If the ...

    Text Solution

    |

  14. The solution of the differential equation ((dy)/(dx))^(4)-((dy)/(dx))^...

    Text Solution

    |

  15. For the complex number z satisfying the condition |z+(2)/(z)|=2, the m...

    Text Solution

    |

  16. If the area bounded by y le e -|x-e| and y ge 0 is A sq. units, then l...

    Text Solution

    |

  17. If the middle term in the expansion of ((1)/(x)+x sinx)^(10) is equal ...

    Text Solution

    |

  18. Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A, th...

    Text Solution

    |

  19. The value of lim(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e ...

    Text Solution

    |

  20. A tangent of slope 2 of the ellipse (x^(2))/(a^(2))+(y^(2))/(1)=1 pass...

    Text Solution

    |