Home
Class 12
MATHS
For the complex number z satisfying the ...

For the complex number z satisfying the condition `|z+(2)/(z)|=2`, the maximum value of `|z|` is

A

`sqrt3-1`

B

`sqrt3+1`

C

`sqrt2+sqrt3`

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \( |z| \) for the complex number \( z \) that satisfies the condition \( |z + \frac{2}{z}| = 2 \). ### Step 1: Rewrite the Given Condition We start with the equation: \[ |z + \frac{2}{z}| = 2 \] Let \( z = re^{i\theta} \), where \( r = |z| \) and \( \theta \) is the argument of \( z \). Then we can rewrite \( \frac{2}{z} \) as: \[ \frac{2}{z} = \frac{2}{re^{i\theta}} = \frac{2}{r} e^{-i\theta} \] Thus, the expression becomes: \[ |re^{i\theta} + \frac{2}{r} e^{-i\theta}| = 2 \] ### Step 2: Combine the Terms We can express this as: \[ |r e^{i\theta} + \frac{2}{r} e^{-i\theta}| = |r \cos \theta + \frac{2}{r} \cos(-\theta) + i(r \sin \theta + \frac{2}{r} \sin(-\theta))| \] This simplifies to: \[ |r \cos \theta + \frac{2}{r} \cos \theta + i(r \sin \theta - \frac{2}{r} \sin \theta)| = |(r + \frac{2}{r}) \cos \theta + i(r - \frac{2}{r}) \sin \theta| \] ### Step 3: Apply the Modulus The modulus can be calculated as: \[ \sqrt{((r + \frac{2}{r}) \cos \theta)^2 + ((r - \frac{2}{r}) \sin \theta)^2} = 2 \] Squaring both sides gives: \[ (r + \frac{2}{r})^2 \cos^2 \theta + (r - \frac{2}{r})^2 \sin^2 \theta = 4 \] ### Step 4: Expand and Simplify Expanding both terms: \[ (r^2 + 4 + \frac{4}{r^2}) \cos^2 \theta + (r^2 - 4 + \frac{4}{r^2}) \sin^2 \theta = 4 \] Combining terms yields: \[ r^2(\cos^2 \theta + \sin^2 \theta) + 4 \cos^2 \theta - 4 \sin^2 \theta + \frac{4}{r^2}(\cos^2 \theta + \sin^2 \theta) = 4 \] Using \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ r^2 + 4 \cos^2 \theta - 4 \sin^2 \theta + \frac{4}{r^2} = 4 \] ### Step 5: Rearranging the Equation Rearranging gives: \[ r^2 + \frac{4}{r^2} + 4(\cos^2 \theta - \sin^2 \theta) = 4 \] Let \( x = r^2 \): \[ x + \frac{4}{x} + 4(\cos^2 \theta - \sin^2 \theta) = 4 \] This implies: \[ x + \frac{4}{x} = 4 - 4(\cos^2 \theta - \sin^2 \theta) \] ### Step 6: Finding Maximum Value To maximize \( |z| \), we need to minimize \( \cos^2 \theta - \sin^2 \theta \). The minimum value occurs when \( \theta = \frac{\pi}{4} \) or \( \theta = \frac{3\pi}{4} \), giving \( \cos^2 \theta - \sin^2 \theta = 0 \). Thus, we have: \[ x + \frac{4}{x} = 4 \] Multiplying by \( x \): \[ x^2 - 4x + 4 = 0 \] This factors to: \[ (x - 2)^2 = 0 \] Thus, \( x = 2 \) which means \( r^2 = 2 \) or \( |z| = \sqrt{2} \). ### Conclusion The maximum value of \( |z| \) is: \[ \boxed{1 + \sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 80

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 82

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The complex number z satisfies thc condition |z-(25)/(z)|=24. The maximum distance from the origin of co-ordinates to the points z is

The complex number z satisfying z+|z|=1+7i then |z|^(2)=

The complex number z which satisfies the condition |(i +z)/(i-z)|=1 lies on:

If the complex no: z satisfies the condition |z|>=3, then the least value of |z+(1)/(z)| is

The complex number z satisfying the condition arg{(z-1)/(z+1)}=(pi)/(4) lies on

If complex number z satisfies the condition |z-2+i|<=1 , then maximum distance of origin from A(4+i(2-z)) is

Find the non-zero complex numbers z satisfying z=iz^(2)

If z is any complex number satisfying |z-3-2i|<=2 then the maximum value of |2z-6+5i| is

NTA MOCK TESTS-NTA JEE MOCK TEST 81-MATHEMATICS
  1. If a, b, c in R^(+) such that a+b+c=27, then the maximum value of a^(2...

    Text Solution

    |

  2. Find the degrees and radians the angle between the hour hand and the ...

    Text Solution

    |

  3. If f(x)=2sinx-x^(2), then in x in [0, pi]

    Text Solution

    |

  4. 15 coins are tossed. If the probability of getting at least 8 heads is...

    Text Solution

    |

  5. A normal line with positive direction cosines to the plane P makes equ...

    Text Solution

    |

  6. Let A=[a(ij)](3xx3) be a scalar matrix whose elements are the roots of...

    Text Solution

    |

  7. For three non - zero vectors veca, vecb and vecc, if [(veca, vecb , ve...

    Text Solution

    |

  8. Let f:[-1,1] rArr B be a function defined as f(x)=cot^(-1)(cot((2x)/(...

    Text Solution

    |

  9. If p, q are r are three logical statements, then the truth value of th...

    Text Solution

    |

  10. If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):}, t...

    Text Solution

    |

  11. The set (AuuBuuC)nn(AnnB'nnC')' is equal to

    Text Solution

    |

  12. Let the circumcentre of DeltaABC is S(-1, 0) and the midpoints of the ...

    Text Solution

    |

  13. For a DeltaABC the vertices are A(0, 3), B(0, 12) and C(x, 0). If the ...

    Text Solution

    |

  14. The solution of the differential equation ((dy)/(dx))^(4)-((dy)/(dx))^...

    Text Solution

    |

  15. For the complex number z satisfying the condition |z+(2)/(z)|=2, the m...

    Text Solution

    |

  16. If the area bounded by y le e -|x-e| and y ge 0 is A sq. units, then l...

    Text Solution

    |

  17. If the middle term in the expansion of ((1)/(x)+x sinx)^(10) is equal ...

    Text Solution

    |

  18. Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A, th...

    Text Solution

    |

  19. The value of lim(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e ...

    Text Solution

    |

  20. A tangent of slope 2 of the ellipse (x^(2))/(a^(2))+(y^(2))/(1)=1 pass...

    Text Solution

    |