Home
Class 12
MATHS
Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x...

Let `A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)]` be a matrix. If `A^(2)=A`, then the value of x is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the matrix \( A \) satisfies the equation \( A^2 = A \). Given the matrix: \[ A = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 3 & -1 \\ -4 & 4 & -x \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we need to multiply matrix \( A \) by itself. \[ A^2 = A \cdot A = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 3 & -1 \\ -4 & 4 & -x \end{pmatrix} \cdot \begin{pmatrix} 2 & -1 & 1 \\ -2 & 3 & -1 \\ -4 & 4 & -x \end{pmatrix} \] ### Step 2: Perform the matrix multiplication Calculating each element of the resulting matrix \( A^2 \): - **First row, first column**: \[ 2 \cdot 2 + (-1) \cdot (-2) + 1 \cdot (-4) = 4 + 2 - 4 = 2 \] - **First row, second column**: \[ 2 \cdot (-1) + (-1) \cdot 3 + 1 \cdot 4 = -2 - 3 + 4 = -1 \] - **First row, third column**: \[ 2 \cdot 1 + (-1) \cdot (-1) + 1 \cdot (-x) = 2 + 1 - x = 3 - x \] - **Second row, first column**: \[ -2 \cdot 2 + 3 \cdot (-2) + (-1) \cdot (-4) = -4 - 6 + 4 = -6 \] - **Second row, second column**: \[ -2 \cdot (-1) + 3 \cdot 3 + (-1) \cdot 4 = 2 + 9 - 4 = 7 \] - **Second row, third column**: \[ -2 \cdot 1 + 3 \cdot (-1) + (-1) \cdot (-x) = -2 - 3 + x = x - 5 \] - **Third row, first column**: \[ -4 \cdot 2 + 4 \cdot (-2) + (-x) \cdot (-4) = -8 - 8 + 4x = 4x - 16 \] - **Third row, second column**: \[ -4 \cdot (-1) + 4 \cdot 3 + (-x) \cdot 4 = 4 + 12 - 4x = 16 - 4x \] - **Third row, third column**: \[ -4 \cdot 1 + 4 \cdot (-1) + (-x) \cdot (-x) = -4 - 4 + x^2 = x^2 - 8 \] So, we have: \[ A^2 = \begin{pmatrix} 2 & -1 & 3 - x \\ -6 & 7 & x - 5 \\ 4x - 16 & 16 - 4x & x^2 - 8 \end{pmatrix} \] ### Step 3: Set \( A^2 = A \) Now we set \( A^2 \) equal to \( A \): \[ \begin{pmatrix} 2 & -1 & 3 - x \\ -6 & 7 & x - 5 \\ 4x - 16 & 16 - 4x & x^2 - 8 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 1 \\ -2 & 3 & -1 \\ -4 & 4 & -x \end{pmatrix} \] ### Step 4: Equate corresponding elements From the first row, third column: \[ 3 - x = 1 \implies x = 2 \] From the second row, first column: \[ -6 = -2 \quad \text{(not used, already consistent)} \] From the second row, third column: \[ x - 5 = -1 \implies x = 4 \quad \text{(not used, already consistent)} \] From the third row, first column: \[ 4x - 16 = -4 \implies 4x = 12 \implies x = 3 \quad \text{(not used, already consistent)} \] From the third row, third column: \[ x^2 - 8 = -x \implies x^2 + x - 8 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1 + 32}}{2} = \frac{-1 \pm 6}{2} \] This gives: \[ x = \frac{5}{2} \quad \text{or} \quad x = -\frac{7}{2} \] ### Conclusion However, we already found \( x = 2 \) from the first row, third column. Thus, the value of \( x \) that satisfies \( A^2 = A \) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 80

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 82

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let A=[(x,2,-3),(-1,3,-2),(2,-1,1)] be a matrix and |adj(adjA)|=(12)^(4) , then the sum of all the values of x is equal to

If A=[(1,x,3),(1,3,3),(2,4,4)] is the adjoint of a 3xx3 matrix B and det. (B)=4 , then the value of x is ______ .

If the trace of the matrix A=({:(x-5,0,2,4),(3,x^(2)-10,6,1),(-2,3,x-7,1),(1,2,0,-2):}) assumes the value zero, then the value of x equals to

Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)) , then the value of 17f'(2) is equal to

If matrix A=[(1,2),(4,3)] , such that AX=l , then X is equal to

Let alpha be a root of the equation x ^(2) - x+1=0, and the matrix A=[{:(1,1,1),(1, alpha , alpha ^(2)), (1, alpha ^(2), alpha ^(4)):}] and matrix B= [{:(1,-1, -1),(1, alpha, - alpha ^(2)),(-1, -alpha ^(2), - alpha ^(4)):}] then the vlaue of |AB| is:

Let px^4+qx^3+rx^2+sx+t=|{:(x^2+3x,x-1,x+3),(x+1,-2,x-4),(x-3,x+4,3x):}| be an identity where p,q,r,s and t are constants, then the value of s is equal to

Let A=[1 2 3-5] and B=[1 0 0 2] and X be a matrix such that A=B X , then X is equal to 1/2[2 4 3-5] (b) 1/2[-2 4 3 5] (c) [2 4 3-5] (d) none of these

NTA MOCK TESTS-NTA JEE MOCK TEST 81-MATHEMATICS
  1. If a, b, c in R^(+) such that a+b+c=27, then the maximum value of a^(2...

    Text Solution

    |

  2. Find the degrees and radians the angle between the hour hand and the ...

    Text Solution

    |

  3. If f(x)=2sinx-x^(2), then in x in [0, pi]

    Text Solution

    |

  4. 15 coins are tossed. If the probability of getting at least 8 heads is...

    Text Solution

    |

  5. A normal line with positive direction cosines to the plane P makes equ...

    Text Solution

    |

  6. Let A=[a(ij)](3xx3) be a scalar matrix whose elements are the roots of...

    Text Solution

    |

  7. For three non - zero vectors veca, vecb and vecc, if [(veca, vecb , ve...

    Text Solution

    |

  8. Let f:[-1,1] rArr B be a function defined as f(x)=cot^(-1)(cot((2x)/(...

    Text Solution

    |

  9. If p, q are r are three logical statements, then the truth value of th...

    Text Solution

    |

  10. If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):}, t...

    Text Solution

    |

  11. The set (AuuBuuC)nn(AnnB'nnC')' is equal to

    Text Solution

    |

  12. Let the circumcentre of DeltaABC is S(-1, 0) and the midpoints of the ...

    Text Solution

    |

  13. For a DeltaABC the vertices are A(0, 3), B(0, 12) and C(x, 0). If the ...

    Text Solution

    |

  14. The solution of the differential equation ((dy)/(dx))^(4)-((dy)/(dx))^...

    Text Solution

    |

  15. For the complex number z satisfying the condition |z+(2)/(z)|=2, the m...

    Text Solution

    |

  16. If the area bounded by y le e -|x-e| and y ge 0 is A sq. units, then l...

    Text Solution

    |

  17. If the middle term in the expansion of ((1)/(x)+x sinx)^(10) is equal ...

    Text Solution

    |

  18. Let A=[(2, -1, 1),(-2, 3, -1),(-4, 4, -x)] be a matrix. If A^(2)=A, th...

    Text Solution

    |

  19. The value of lim(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e ...

    Text Solution

    |

  20. A tangent of slope 2 of the ellipse (x^(2))/(a^(2))+(y^(2))/(1)=1 pass...

    Text Solution

    |