Home
Class 12
MATHS
If the points A(3-x, 3, 3), B(3, 3-y, 3)...

If the points `A(3-x, 3, 3), B(3, 3-y, 3), C(3, 3-y, 3) and C(3, 3, 3-z)D(2, 2, 2)` are coplanar, then `(1)/(x)+(1)/(y)+(1)/(z)` is equal to

A

`-1`

B

1

C

3

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of determining the value of \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\) given that the points \(A(3-x, 3, 3)\), \(B(3, 3-y, 3)\), \(C(3, 3, 3-z)\), and \(D(2, 2, 2)\) are coplanar, we will follow these steps: ### Step 1: Find the position vectors of points A, B, C, and D The position vectors of the points are: - \( \vec{A} = (3-x, 3, 3) \) - \( \vec{B} = (3, 3-y, 3) \) - \( \vec{C} = (3, 3, 3-z) \) - \( \vec{D} = (2, 2, 2) \) ### Step 2: Calculate the vectors \(\vec{DA}\), \(\vec{DB}\), and \(\vec{DC}\) We calculate the vectors from point D to points A, B, and C: - \( \vec{DA} = \vec{A} - \vec{D} = (3-x-2, 3-2, 3-2) = (1-x, 1, 1) \) - \( \vec{DB} = \vec{B} - \vec{D} = (3-2, 3-y-2, 3-2) = (1, 1-y, 1) \) - \( \vec{DC} = \vec{C} - \vec{D} = (3-2, 3-2, 3-z-2) = (1, 1, 1-z) \) ### Step 3: Set up the determinant for coplanarity The points A, B, C, and D are coplanar if the scalar triple product of the vectors \(\vec{DA}\), \(\vec{DB}\), and \(\vec{DC}\) is zero. This can be expressed as the determinant: \[ \begin{vmatrix} 1-x & 1 & 1 \\ 1 & 1-y & 1 \\ 1 & 1 & 1-z \end{vmatrix} = 0 \] ### Step 4: Calculate the determinant Expanding the determinant, we have: \[ (1-x) \begin{vmatrix} 1-y & 1 \\ 1 & 1-z \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & 1-z \end{vmatrix} + 1 \begin{vmatrix} 1 & 1-y \\ 1 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 1-y & 1 \\ 1 & 1-z \end{vmatrix} = (1-y)(1-z) - 1 = 1 - y - z + yz - 1 = yz - y - z \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & 1-z \end{vmatrix} = 1(1-z) - 1 = 1 - z - 1 = -z \) 3. \( \begin{vmatrix} 1 & 1-y \\ 1 & 1 \end{vmatrix} = 1(1) - 1(1-y) = 1 - (1-y) = y \) Putting it all together: \[ (1-x)(yz - y - z) + z + y = 0 \] ### Step 5: Expand and simplify the equation Expanding gives: \[ (1-x)yz - (1-x)y - (1-x)z + z + y = 0 \] Rearranging terms leads to: \[ yz - xy - xz + z + y = 0 \] ### Step 6: Rearranging the equation We can rearrange this to find: \[ xyz = xy + xz + yz \] ### Step 7: Divide through by \(xyz\) Dividing by \(xyz\) gives: \[ 1 = \frac{1}{y} + \frac{1}{z} + \frac{1}{x} \] Thus, we find: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1 \] ### Final Answer The value of \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 81

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 83

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the origin and the points A(1, 2, -2), B(1, -2, 3), C(x, y, z) are coplanar, then

(2-3x)/(x)+(2-3y)/(y)+(2-3z)/(z)=0 then (1)/(x)+(1)/(y)+(1)/(z)=

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

If [[3,2],[x,1]]=[[z, y],[3,1]] then (x+1,y+1,z+1) is equal to

If [(2,-1,3),(1,3,-1),(3,2,1)],[(x),(y),(z)]=[(9),(4),(10)] ,then [(x),(y),(z)] is equal to

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

Find the S.D. between the lines : (i) (x)/(2) = (y)/(-3) = (z)/(1) and (x -2)/(3) = (y - 1)/(-5) = (z + 4)/(2) (ii) (x -1)/(2) = (y - 2)/(3) = (z - 3)/(2) and (x + 1)/(3) = (y - 1)/(2) = (z - 1)/(5) (iii) (x + 1)/(7) = (y + 1)/(-6) = (z + 1)/(1) and (x -3)/(1) = (y -5)/(-2) = (z - 7)/(1) (iv) (x - 3)/(3) = (y - 8)/(-1) = (z-3)/(1) and (x + 3)/(-3) = (y +7)/(2) = (z -6)/(4) .

NTA MOCK TESTS-NTA JEE MOCK TEST 82-MATHEMATICS
  1. A bag contains 5 white, 4 black and 2 red balls. Balls are drawn one b...

    Text Solution

    |

  2. Let L be the line through the intersection of the planes 3x-y+2z+1=0 a...

    Text Solution

    |

  3. If the points A(3-x, 3, 3), B(3, 3-y, 3), C(3, 3-y, 3) and C(3, 3, 3-z...

    Text Solution

    |

  4. For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal ...

    Text Solution

    |

  5. If only the 4^("th") term in the expansion of (2+(3pi)/(8))^(10) has t...

    Text Solution

    |

  6. The number of ways in which letter of the word '"ARRANGE"' can be arra...

    Text Solution

    |

  7. If alpha and beta the roots of the equation x^(2)-2x+3=0, then the sum...

    Text Solution

    |

  8. In triangle A B C , if sinAcosB=1/4a n d3t a n A=t a n B ,t h e ncot^2...

    Text Solution

    |

  9. The average weght of the students in a class of 39 students is 40 kg. ...

    Text Solution

    |

  10. If two parabolas y^(2)=4a(x-k) and x^(2)=4a(y-k) have only one common ...

    Text Solution

    |

  11. The locus of a point P(alpha, beta) moving under the condition that th...

    Text Solution

    |

  12. For a complex number Z, if the argument of 3+3i and (Z-2) (bar(Z)-1) a...

    Text Solution

    |

  13. If the function f(x)=x^(3)-3ax has a local minimum at x=lambda(lambda ...

    Text Solution

    |

  14. If the integral I=int(2x^(2))/(4+x^(2))dx=2x-f(x)+c, where f(2)=pi, th...

    Text Solution

    |

  15. An isosceles triangle of wood of base 10 feet and height (8)/(sqrt3) f...

    Text Solution

    |

  16. The solution of the differential equation xdy-ydx+3x^(2)y^(2)e^(x^(3))...

    Text Solution

    |

  17. If cot^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…………..)+tan^(-1)(x^(2)-(x^(4))/(...

    Text Solution

    |

  18. The value of lim(xrarr1)(root5(x^(2))-2root5x+1)/(4(x-1)^(2)) is equal...

    Text Solution

    |

  19. If A be a square matrix of order 3, such that |A|=sqrt5, then |Adj(-3A...

    Text Solution

    |

  20. For the series S=1+(1)/((1+3))(1+2)^(2)+(1)/((1+3+5))(1+2+3)^(2)+(1)/(...

    Text Solution

    |