Home
Class 12
MATHS
If only the 4^("th") term in the expansi...

If only the `4^("th")` term in the expansion of `(2+(3pi)/(8))^(10)` has the greatest numerical value, then the integral values of x are

A

`{-3, -2, 2, 3}`

B

`{-2, -1, 1, 2}`

C

`{-3, 3}`

D

`{-3, -2, -1, 0, 1, 2, 3}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the integral values of \( x \) such that the fourth term in the expansion of \( (2 + \frac{3\pi}{8})^{10} \) has the greatest numerical value compared to the third and fifth terms. ### Step-by-Step Solution: 1. **Identify the General Term**: The general term \( T_{r+1} \) in the binomial expansion of \( (a + b)^n \) is given by: \[ T_{r+1} = \binom{n}{r} a^{n-r} b^r \] Here, \( a = 2 \), \( b = \frac{3\pi}{8} \), and \( n = 10 \). 2. **Find the Fourth, Third, and Fifth Terms**: - For the fourth term \( T_4 \) (where \( r = 3 \)): \[ T_4 = \binom{10}{3} \cdot 2^{10-3} \cdot \left(\frac{3\pi}{8}\right)^3 \] - For the third term \( T_3 \) (where \( r = 2 \)): \[ T_3 = \binom{10}{2} \cdot 2^{10-2} \cdot \left(\frac{3\pi}{8}\right)^2 \] - For the fifth term \( T_5 \) (where \( r = 4 \)): \[ T_5 = \binom{10}{4} \cdot 2^{10-4} \cdot \left(\frac{3\pi}{8}\right)^4 \] 3. **Set Up the Ratios**: We need to ensure that \( |T_4| > |T_3| \) and \( |T_4| > |T_5| \). - Calculate the ratio \( \frac{T_4}{T_3} \): \[ \frac{T_4}{T_3} = \frac{\binom{10}{3} \cdot 2^7 \cdot \left(\frac{3\pi}{8}\right)^3}{\binom{10}{2} \cdot 2^8 \cdot \left(\frac{3\pi}{8}\right)^2} \] Simplifying this gives: \[ \frac{T_4}{T_3} = \frac{10 \cdot 9}{3 \cdot 2} \cdot \frac{3\pi}{8} = \frac{15\pi}{8} \] - Calculate the ratio \( \frac{T_5}{T_4} \): \[ \frac{T_5}{T_4} = \frac{\binom{10}{4} \cdot 2^6 \cdot \left(\frac{3\pi}{8}\right)^4}{\binom{10}{3} \cdot 2^7 \cdot \left(\frac{3\pi}{8}\right)^3} \] Simplifying this gives: \[ \frac{T_5}{T_4} = \frac{10 \cdot 9 \cdot 8}{4 \cdot 3 \cdot 2} \cdot \frac{3\pi}{8} = \frac{21}{64} x \] 4. **Set Up Inequalities**: From the ratios: - For \( |T_4| > |T_3| \): \[ \left|\frac{15\pi}{8}\right| > 1 \implies |x| > \frac{64}{15\pi} \] - For \( |T_4| > |T_5| \): \[ \left|\frac{21}{64} x\right| < 1 \implies |x| < \frac{64}{21} \] 5. **Combine the Inequalities**: We have: \[ \frac{64}{15\pi} < |x| < \frac{64}{21} \] 6. **Find Integral Values**: Calculate the approximate values: - \( \frac{64}{15\pi} \approx 1.36 \) - \( \frac{64}{21} \approx 3.05 \) Thus, the integral values of \( x \) that satisfy these inequalities are: \[ x = -3, -2, 2, 3 \] ### Final Answer: The integral values of \( x \) are \( -3, -2, 2, 3 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 81

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 83

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Find the 4 th term in the expansion of (1-2x)^((3)/(2))

Find the 8th term in the expansion of ((2x)/(3)-(3)/(5x))^(12)

Find the 7th term in the expansion of ((4x)/5+5/(2x))^(8)

Given that the 4 th term in the expansion of [2+(3/8x)]^(10) has the maximum numerical value.Then find the range of value of x.

If the 4^(th) term in the expansion of (2+3(x)/(8))^(10) has the maximum value,then the values of x for which this will be true is:

Find the 7 th term n the expansion of (3x^(2)-(1)/(x^(3)))^(10)

Find the 7 th term in the expansion of ((4x)/(5)+(5)/(2x))^(8)

Find the 6th term in expansion of (2x^(2)-1/3x^(2))^(10)

The coeff.of 8^(th) term in the expansion of (1+x)^(10) is

If 6^(th) term in the expansion of ((3)/(2)+(x)/(3))^(n) is numerically greatest, when x=3 , then the sum of possible integral values of 'n' is

NTA MOCK TESTS-NTA JEE MOCK TEST 82-MATHEMATICS
  1. If the points A(3-x, 3, 3), B(3, 3-y, 3), C(3, 3-y, 3) and C(3, 3, 3-z...

    Text Solution

    |

  2. For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal ...

    Text Solution

    |

  3. If only the 4^("th") term in the expansion of (2+(3pi)/(8))^(10) has t...

    Text Solution

    |

  4. The number of ways in which letter of the word '"ARRANGE"' can be arra...

    Text Solution

    |

  5. If alpha and beta the roots of the equation x^(2)-2x+3=0, then the sum...

    Text Solution

    |

  6. In triangle A B C , if sinAcosB=1/4a n d3t a n A=t a n B ,t h e ncot^2...

    Text Solution

    |

  7. The average weght of the students in a class of 39 students is 40 kg. ...

    Text Solution

    |

  8. If two parabolas y^(2)=4a(x-k) and x^(2)=4a(y-k) have only one common ...

    Text Solution

    |

  9. The locus of a point P(alpha, beta) moving under the condition that th...

    Text Solution

    |

  10. For a complex number Z, if the argument of 3+3i and (Z-2) (bar(Z)-1) a...

    Text Solution

    |

  11. If the function f(x)=x^(3)-3ax has a local minimum at x=lambda(lambda ...

    Text Solution

    |

  12. If the integral I=int(2x^(2))/(4+x^(2))dx=2x-f(x)+c, where f(2)=pi, th...

    Text Solution

    |

  13. An isosceles triangle of wood of base 10 feet and height (8)/(sqrt3) f...

    Text Solution

    |

  14. The solution of the differential equation xdy-ydx+3x^(2)y^(2)e^(x^(3))...

    Text Solution

    |

  15. If cot^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…………..)+tan^(-1)(x^(2)-(x^(4))/(...

    Text Solution

    |

  16. The value of lim(xrarr1)(root5(x^(2))-2root5x+1)/(4(x-1)^(2)) is equal...

    Text Solution

    |

  17. If A be a square matrix of order 3, such that |A|=sqrt5, then |Adj(-3A...

    Text Solution

    |

  18. For the series S=1+(1)/((1+3))(1+2)^(2)+(1)/((1+3+5))(1+2+3)^(2)+(1)/(...

    Text Solution

    |

  19. Consider circles C(1) and C(2) touching both the axes and passing thro...

    Text Solution

    |

  20. The area bounded by y=min(x, 2-x) with y=(x-1)^(2) is K sq. units, the...

    Text Solution

    |