Home
Class 12
MATHS
The value of lim(xrarr1)(root5(x^(2))-2r...

The value of `lim_(xrarr1)(root5(x^(2))-2root5x+1)/(4(x-1)^(2))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \frac{\sqrt[5]{x^2} - 2\sqrt[5]{x} + 1}{4(x-1)^2} \), we will follow these steps: ### Step 1: Substitute \( x = 1 \) First, we substitute \( x = 1 \) into the limit expression to check if we get an indeterminate form. \[ \sqrt[5]{1^2} - 2\sqrt[5]{1} + 1 = 1 - 2 + 1 = 0 \] \[ 4(1-1)^2 = 4 \cdot 0 = 0 \] Since we get the form \( \frac{0}{0} \), we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately. **Numerator:** Let \( f(x) = \sqrt[5]{x^2} - 2\sqrt[5]{x} + 1 \). To differentiate \( f(x) \): - The derivative of \( \sqrt[5]{x^2} \) is \( \frac{2}{5} x^{-\frac{3}{5}} \). - The derivative of \( -2\sqrt[5]{x} \) is \( -\frac{2}{5} x^{-\frac{4}{5}} \). Thus, the derivative of the numerator is: \[ f'(x) = \frac{2}{5} x^{-\frac{3}{5}} - \frac{2}{5} x^{-\frac{4}{5}} \] **Denominator:** Let \( g(x) = 4(x-1)^2 \). The derivative is: \[ g'(x) = 8(x-1) \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 1} \frac{f'(x)}{g'(x)} = \lim_{x \to 1} \frac{\frac{2}{5} x^{-\frac{3}{5}} - \frac{2}{5} x^{-\frac{4}{5}}}{8(x-1)} \] ### Step 4: Substitute \( x = 1 \) again Now we substitute \( x = 1 \) in the new limit: - For the numerator: \[ f'(1) = \frac{2}{5}(1)^{-\frac{3}{5}} - \frac{2}{5}(1)^{-\frac{4}{5}} = \frac{2}{5} - \frac{2}{5} = 0 \] - For the denominator: \[ g'(1) = 8(1-1) = 0 \] Again, we have the form \( \frac{0}{0} \). We need to apply L'Hôpital's Rule again. ### Step 5: Differentiate again Differentiate \( f'(x) \) and \( g'(x) \) again. **Numerator:** \[ f''(x) = -\frac{6}{25} x^{-\frac{8}{5}} + \frac{8}{25} x^{-\frac{9}{5}} \] **Denominator:** \[ g''(x) = 8 \] ### Step 6: Rewrite the limit again Now we can rewrite the limit: \[ \lim_{x \to 1} \frac{f''(x)}{g''(x)} = \lim_{x \to 1} \frac{-\frac{6}{25} x^{-\frac{8}{5}} + \frac{8}{25} x^{-\frac{9}{5}}}{8} \] ### Step 7: Substitute \( x = 1 \) one last time Now substitute \( x = 1 \): \[ f''(1) = -\frac{6}{25}(1)^{-\frac{8}{5}} + \frac{8}{25}(1)^{-\frac{9}{5}} = -\frac{6}{25} + \frac{8}{25} = \frac{2}{25} \] \[ g''(1) = 8 \] ### Step 8: Calculate the limit Now we can calculate the limit: \[ \lim_{x \to 1} \frac{\frac{2}{25}}{8} = \frac{2}{200} = \frac{1}{100} \] Thus, the value of the limit is: \[ \boxed{\frac{1}{100}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 81

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 83

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr1)(root5(x^(2))-2root5x+1)/((x-1)^(2)) is equal to

lim_(x rarr0)(root(3)(1+x^(2))-root(4)(1-2x))/(x+x^(2)) is equal to

The value of lim_(x rarr oo)[root(3)((n+1)^(2))-root(3)((n-1)^(2))] is

lim_(xrarr oo) (x^(2^(32))-2^32x+4^16-1)/((x-1)^2) is equal to

The value of lim_(xrarr1)Sigma_(r=1)^(10)=(x^(r )-1^(r ))/(2(x-1)) is equal to

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

The value of lim_(xrarr1) (root(13)x-root7x)/(root5x-root3x) is

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 82-MATHEMATICS
  1. If the points A(3-x, 3, 3), B(3, 3-y, 3), C(3, 3-y, 3) and C(3, 3, 3-z...

    Text Solution

    |

  2. For a matrix A, if A^(2)=A and B=I-A then AB+BA +I-(I-A)^(2) is equal ...

    Text Solution

    |

  3. If only the 4^("th") term in the expansion of (2+(3pi)/(8))^(10) has t...

    Text Solution

    |

  4. The number of ways in which letter of the word '"ARRANGE"' can be arra...

    Text Solution

    |

  5. If alpha and beta the roots of the equation x^(2)-2x+3=0, then the sum...

    Text Solution

    |

  6. In triangle A B C , if sinAcosB=1/4a n d3t a n A=t a n B ,t h e ncot^2...

    Text Solution

    |

  7. The average weght of the students in a class of 39 students is 40 kg. ...

    Text Solution

    |

  8. If two parabolas y^(2)=4a(x-k) and x^(2)=4a(y-k) have only one common ...

    Text Solution

    |

  9. The locus of a point P(alpha, beta) moving under the condition that th...

    Text Solution

    |

  10. For a complex number Z, if the argument of 3+3i and (Z-2) (bar(Z)-1) a...

    Text Solution

    |

  11. If the function f(x)=x^(3)-3ax has a local minimum at x=lambda(lambda ...

    Text Solution

    |

  12. If the integral I=int(2x^(2))/(4+x^(2))dx=2x-f(x)+c, where f(2)=pi, th...

    Text Solution

    |

  13. An isosceles triangle of wood of base 10 feet and height (8)/(sqrt3) f...

    Text Solution

    |

  14. The solution of the differential equation xdy-ydx+3x^(2)y^(2)e^(x^(3))...

    Text Solution

    |

  15. If cot^(-1)(x-(x^(2))/(2)+(x^(3))/(4)-…………..)+tan^(-1)(x^(2)-(x^(4))/(...

    Text Solution

    |

  16. The value of lim(xrarr1)(root5(x^(2))-2root5x+1)/(4(x-1)^(2)) is equal...

    Text Solution

    |

  17. If A be a square matrix of order 3, such that |A|=sqrt5, then |Adj(-3A...

    Text Solution

    |

  18. For the series S=1+(1)/((1+3))(1+2)^(2)+(1)/((1+3+5))(1+2+3)^(2)+(1)/(...

    Text Solution

    |

  19. Consider circles C(1) and C(2) touching both the axes and passing thro...

    Text Solution

    |

  20. The area bounded by y=min(x, 2-x) with y=(x-1)^(2) is K sq. units, the...

    Text Solution

    |