Home
Class 12
MATHS
Let veca and vecb are unit vectors such ...

Let `veca and vecb` are unit vectors such that `|veca+vecb|=(3)/(2)`, then the value of `(2veca+7vecb).(4veca+3vecb+2020vecaxxvecb)` is equal to

A

`(133)/(4)`

B

133

C

30

D

120

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((2\vec{a} + 7\vec{b}) \cdot (4\vec{a} + 3\vec{b} + 2020\vec{a} \times \vec{b})\) given that \(|\vec{a} + \vec{b}| = \frac{3}{2}\) and \(\vec{a}\) and \(\vec{b}\) are unit vectors. ### Step-by-step Solution: 1. **Given Information:** - \(|\vec{a}| = 1\) and \(|\vec{b}| = 1\) (since they are unit vectors). - \(|\vec{a} + \vec{b}| = \frac{3}{2}\). 2. **Square the Magnitude:** \[ |\vec{a} + \vec{b}|^2 = \left(\frac{3}{2}\right)^2 = \frac{9}{4} \] Expanding the left side using the formula for the magnitude of a vector: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2\vec{a} \cdot \vec{b} \] Substituting the values: \[ 1 + 1 + 2\vec{a} \cdot \vec{b} = \frac{9}{4} \] This simplifies to: \[ 2 + 2\vec{a} \cdot \vec{b} = \frac{9}{4} \] 3. **Solve for \(\vec{a} \cdot \vec{b}\):** \[ 2\vec{a} \cdot \vec{b} = \frac{9}{4} - 2 = \frac{9}{4} - \frac{8}{4} = \frac{1}{4} \] Therefore: \[ \vec{a} \cdot \vec{b} = \frac{1}{8} \] 4. **Calculate the Dot Product:** We need to evaluate: \[ (2\vec{a} + 7\vec{b}) \cdot (4\vec{a} + 3\vec{b} + 2020\vec{a} \times \vec{b}) \] Expanding this: \[ = 2\vec{a} \cdot (4\vec{a} + 3\vec{b} + 2020\vec{a} \times \vec{b}) + 7\vec{b} \cdot (4\vec{a} + 3\vec{b} + 2020\vec{a} \times \vec{b}) \] 5. **Calculate Each Dot Product:** - For \(2\vec{a} \cdot (4\vec{a})\): \[ 2 \cdot 4(\vec{a} \cdot \vec{a}) = 8 \cdot 1 = 8 \] - For \(2\vec{a} \cdot (3\vec{b})\): \[ 2 \cdot 3(\vec{a} \cdot \vec{b}) = 6 \cdot \frac{1}{8} = \frac{3}{4} \] - For \(2\vec{a} \cdot (2020\vec{a} \times \vec{b})\): \[ \text{This is zero since } \vec{a} \cdot (\vec{a} \times \vec{b}) = 0. \] Now for \(7\vec{b} \cdot (4\vec{a})\): - For \(7\vec{b} \cdot (4\vec{a})\): \[ 7 \cdot 4(\vec{b} \cdot \vec{a}) = 28 \cdot \frac{1}{8} = \frac{7}{2} \] - For \(7\vec{b} \cdot (3\vec{b})\): \[ 7 \cdot 3(\vec{b} \cdot \vec{b}) = 21 \cdot 1 = 21 \] - For \(7\vec{b} \cdot (2020\vec{a} \times \vec{b})\): \[ \text{This is zero since } \vec{b} \cdot (\vec{a} \times \vec{b}) = 0. \] 6. **Combine All Results:** \[ 8 + \frac{3}{4} + \frac{7}{2} + 21 \] Converting everything to a common denominator (4): \[ = 8 + \frac{3}{4} + \frac{14}{4} + \frac{84}{4} = \frac{32}{4} + \frac{3}{4} + \frac{14}{4} + \frac{84}{4} = \frac{133}{4} \] ### Final Answer: \[ \frac{133}{4} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 82

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 84

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt(3) , then the value of (2veca+5vecb) . (3veca+vecb+vecaxxvecb)=

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt(3) , then the value of (2veca+5vecb)*(3veca+vecb+vecaxxvecb)=

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)

If veca , vecb are unit vectors such that |vec a+vecb|=-1 " then " |2veca -3vecb| =

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca and vecb are two non collinear unit vectors and |veca+vecb|= sqrt3 , then find the value of (veca- vecb)*(2veca+ vecb)

If veca and vecb are two non collinear unit vectors and iveca+vecbi=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

NTA MOCK TESTS-NTA JEE MOCK TEST 83-MATHEMATICS
  1. The last two digits of the number (23)^(14) are 01 b. 03 c. 09 d. none...

    Text Solution

    |

  2. Let veca and vecb are unit vectors such that |veca+vecb|=(3)/(2), then...

    Text Solution

    |

  3. Set of all the vectors of x saltsfying the inequality sqrt(x^(2)-7x+6)...

    Text Solution

    |

  4. If the value of of the integral I=int(0)^(2pi)sgn(e^(x))dx is equal to...

    Text Solution

    |

  5. Let A lies on 3x-4y+1=0, B lies on 4x+3y-7=0 and C is (-2, 5). If ABCD...

    Text Solution

    |

  6. If f(x)=(x)/(x-1), then the points of discontinuity of the function f^...

    Text Solution

    |

  7. All the students of a class performed poorly in physics. The teacher d...

    Text Solution

    |

  8. Two vertical poles AL and BM of height 4 m and 16 m respectively stand...

    Text Solution

    |

  9. Let A=[(2,3),(5,7)] and B=[(a, 0), (0, b)] where a, b in N. The number...

    Text Solution

    |

  10. A line makes an angle theta with the x-axis and the y-axis. If it make...

    Text Solution

    |

  11. The number of ways in which the letters of the word 'ARRANGE' can be a...

    Text Solution

    |

  12. When two dice are thrown n number of times, the probability of getting...

    Text Solution

    |

  13. Consider the integrals I(1)=inte^(x^(2))cosxdx and I(2)=intxe^(x^(2))s...

    Text Solution

    |

  14. If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt...

    Text Solution

    |

  15. The area bounded by y+x^(2)le 4x and y ge3 is k sq. units, then 3k is ...

    Text Solution

    |

  16. The solution of the differential equation 2sqrtxe^(sqrtx)dy+e^(sqrtx)y...

    Text Solution

    |

  17. The sum of all the values of lambda for which the set {(x, y):x^(2)+y^...

    Text Solution

    |

  18. The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is...

    Text Solution

    |

  19. From a point on the line x-y+2-0 tangents are drawn to the hyperbola (...

    Text Solution

    |

  20. Let omega(omega ne 1) is a cube root of unity, such that (1+omega^(2))...

    Text Solution

    |