Home
Class 12
MATHS
If (sin^(3)theta-cos^(3)theta)/(sin thet...

If `(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi],` then

A

`theta in (0, (pi)/(2))-{(pi)/(4)}`

B

`theta in ((pi)/(2),pi)-{(3pi)/(4)}`

C

`theta in (pi, (3pi)/(2))-{(5pi)/(4)}`

D

`theta in (0, pi)-{(pi)/(4), (pi)/(2)}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta - \cos \theta} - \frac{\cos \theta}{\sqrt{1 + \cot^2 \theta}} - 2 \tan \theta \cot \theta = -1 \] we will follow these steps: ### Step 1: Simplify the first term Using the identity for the difference of cubes, we can rewrite \(\sin^3 \theta - \cos^3 \theta\) as: \[ \sin^3 \theta - \cos^3 \theta = (\sin \theta - \cos \theta)(\sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta) \] Thus, we can simplify the first term: \[ \frac{\sin^3 \theta - \cos^3 \theta}{\sin \theta - \cos \theta} = \sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta \] Since \(\sin^2 \theta + \cos^2 \theta = 1\), we have: \[ \sin^2 \theta + \sin \theta \cos \theta + \cos^2 \theta = 1 + \sin \theta \cos \theta \] ### Step 2: Simplify the second term The term \(\sqrt{1 + \cot^2 \theta}\) can be simplified using the identity \(1 + \cot^2 \theta = \csc^2 \theta\): \[ \sqrt{1 + \cot^2 \theta} = \csc \theta \] Thus, the second term becomes: \[ -\frac{\cos \theta}{\csc \theta} = -\cos \theta \cdot \sin \theta = -\sin \theta \cos \theta \] ### Step 3: Substitute back into the equation Now substituting these simplifications back into the original equation gives us: \[ 1 + \sin \theta \cos \theta - \sin \theta \cos \theta - 2 \tan \theta \cot \theta = -1 \] Since \(\tan \theta \cot \theta = 1\): \[ 1 - 2 = -1 \] This simplifies to: \[ -1 = -1 \] ### Step 4: Analyze the equation The equation holds true for all values of \(\theta\) in the interval \([0, 2\pi]\). However, we need to check for any restrictions or specific values where the terms might be undefined. ### Step 5: Check for undefined points The term \(\tan \theta\) and \(\cot \theta\) can be undefined at \(\theta = k\pi\) for integer \(k\). Specifically, we need to avoid: - \(\theta = 0\) - \(\theta = \pi\) - \(\theta = 2\pi\) ### Conclusion Thus, the values of \(\theta\) that satisfy the equation in the interval \([0, 2\pi]\) are: \[ \theta \in (0, 2\pi) \setminus \{0, \pi, 2\pi\} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 82

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 84

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2tan theta cot theta=-1

(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2tan theta*cot theta=-1

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if

(sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2tan theta cot theta=-1 if theta in(0,(pi)/(2))(b)theta in((pi)/(2),pi)theta in(pi,(3 pi)/(2))(d)theta in((3 pi)/(2),2 pi)

(sin3 theta-sin theta)/(cos theta-cos3 theta)=cot2 theta

(2sin theta*cos theta-cos theta)/(1-sin theta+sin^(2)theta-cos^(2)theta)=cot theta

Prove: (1+cos theta-sin^(2)theta)/(sin theta(1+cos theta))=cot theta

(sin theta)/(1-cos theta)=cos ec theta+cot theta

If sin theta+cos theta=sqrt(3) then prove that tan theta+cot theta=1

If sin theta+cos theta=sqrt(3), then prove that tan theta+cot theta=1

NTA MOCK TESTS-NTA JEE MOCK TEST 83-MATHEMATICS
  1. If f(x)=(x)/(x-1), then the points of discontinuity of the function f^...

    Text Solution

    |

  2. All the students of a class performed poorly in physics. The teacher d...

    Text Solution

    |

  3. Two vertical poles AL and BM of height 4 m and 16 m respectively stand...

    Text Solution

    |

  4. Let A=[(2,3),(5,7)] and B=[(a, 0), (0, b)] where a, b in N. The number...

    Text Solution

    |

  5. A line makes an angle theta with the x-axis and the y-axis. If it make...

    Text Solution

    |

  6. The number of ways in which the letters of the word 'ARRANGE' can be a...

    Text Solution

    |

  7. When two dice are thrown n number of times, the probability of getting...

    Text Solution

    |

  8. Consider the integrals I(1)=inte^(x^(2))cosxdx and I(2)=intxe^(x^(2))s...

    Text Solution

    |

  9. If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt...

    Text Solution

    |

  10. The area bounded by y+x^(2)le 4x and y ge3 is k sq. units, then 3k is ...

    Text Solution

    |

  11. The solution of the differential equation 2sqrtxe^(sqrtx)dy+e^(sqrtx)y...

    Text Solution

    |

  12. The sum of all the values of lambda for which the set {(x, y):x^(2)+y^...

    Text Solution

    |

  13. The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is...

    Text Solution

    |

  14. From a point on the line x-y+2-0 tangents are drawn to the hyperbola (...

    Text Solution

    |

  15. Let omega(omega ne 1) is a cube root of unity, such that (1+omega^(2))...

    Text Solution

    |

  16. For the series S=1+(1)/((1+3))(1+2)^(2)+(1)/((1+3+5))(1+2+3)^(2)+(1)/(...

    Text Solution

    |

  17. The value of lim(xrarr2)Sigma(r=1)^(7)(x^(r )-2^(r ))/(2r(x-2)) is equ...

    Text Solution

    |

  18. If f(theta)=|(cos^(2)theta ,cos theta sin theta, -sin theta),(cos thet...

    Text Solution

    |

  19. The minimum possible distnace between the points A(a, a-1) and B(b, b^...

    Text Solution

    |

  20. Let 2a+2b+c=0, l(1) and l(2) are straight lines of the family ax+by+c=...

    Text Solution

    |