Home
Class 12
MATHS
If A=[(2, 1,-1),(3, 5,2),(1, 6, 1)], the...

If `A=[(2, 1,-1),(3, 5,2),(1, 6, 1)]`, then `tr(Aadj(adjA))` is equal to (where, tr (P) denotes the trace of the matrix P i.e. the sum of all the diagonal elements of the matrix P and adj(P) denotes the adjoint of matrix P)

A

7

B

18

C

`-58`

D

`-1624`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \text{tr}(A \cdot \text{adj}(\text{adj}(A))) \) where \( A = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 5 & 2 \\ 1 & 6 & 1 \end{pmatrix} \). ### Step 1: Use the property of adjoint The property of the adjoint states that: \[ \text{adj}(\text{adj}(A)) = \det(A) \cdot A \] Thus, we can rewrite our expression: \[ \text{tr}(A \cdot \text{adj}(\text{adj}(A))) = \text{tr}(A \cdot (\det(A) \cdot A)) = \det(A) \cdot \text{tr}(A^2) \] ### Step 2: Calculate \( \det(A) \) To find \( \det(A) \), we can use the formula for the determinant of a 3x3 matrix: \[ \det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ A = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 5 & 2 \\ 1 & 6 & 1 \end{pmatrix} \] Calculating the determinant: \[ \det(A) = 2(5 \cdot 1 - 2 \cdot 6) - 1(3 \cdot 1 - 2 \cdot 1) - 1(3 \cdot 6 - 5 \cdot 1) \] Calculating each term: \[ = 2(5 - 12) - 1(3 - 2) - 1(18 - 5) \] \[ = 2(-7) - 1(1) - 1(13) \] \[ = -14 - 1 - 13 = -28 \] Thus, \( \det(A) = -28 \). ### Step 3: Calculate \( A^2 \) Next, we need to calculate \( A^2 = A \cdot A \): \[ A^2 = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 5 & 2 \\ 1 & 6 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & -1 \\ 3 & 5 & 2 \\ 1 & 6 & 1 \end{pmatrix} \] Calculating the elements: - First row: - \( 2 \cdot 2 + 1 \cdot 3 + (-1) \cdot 1 = 4 + 3 - 1 = 6 \) - \( 2 \cdot 1 + 1 \cdot 5 + (-1) \cdot 6 = 2 + 5 - 6 = 1 \) - \( 2 \cdot (-1) + 1 \cdot 2 + (-1) \cdot 1 = -2 + 2 - 1 = -1 \) - Second row: - \( 3 \cdot 2 + 5 \cdot 3 + 2 \cdot 1 = 6 + 15 + 2 = 23 \) - \( 3 \cdot 1 + 5 \cdot 5 + 2 \cdot 6 = 3 + 25 + 12 = 40 \) - \( 3 \cdot (-1) + 5 \cdot 2 + 2 \cdot 1 = -3 + 10 + 2 = 9 \) - Third row: - \( 1 \cdot 2 + 6 \cdot 3 + 1 \cdot 1 = 2 + 18 + 1 = 21 \) - \( 1 \cdot 1 + 6 \cdot 5 + 1 \cdot 6 = 1 + 30 + 6 = 37 \) - \( 1 \cdot (-1) + 6 \cdot 2 + 1 \cdot 1 = -1 + 12 + 1 = 12 \) Thus, we have: \[ A^2 = \begin{pmatrix} 6 & 1 & -1 \\ 23 & 40 & 9 \\ 21 & 37 & 12 \end{pmatrix} \] ### Step 4: Calculate \( \text{tr}(A^2) \) Now, we can find the trace of \( A^2 \): \[ \text{tr}(A^2) = 6 + 40 + 12 = 58 \] ### Step 5: Calculate \( \text{tr}(A \cdot \text{adj}(\text{adj}(A))) \) Now substituting back into our expression: \[ \text{tr}(A \cdot \text{adj}(\text{adj}(A))) = \det(A) \cdot \text{tr}(A^2) = -28 \cdot 58 \] Calculating this gives: \[ -28 \cdot 58 = -1624 \] ### Final Answer Thus, \( \text{tr}(A \cdot \text{adj}(\text{adj}(A))) = -1624 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 83

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 85

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)] . If Z=PQ^(-1) , where Q is a square matrix of order 3, then the value of Tr((adjQ)P) is equal to (where Tr(A) represents the trace of a matrix A i.e. the sum of all the diagonal elements of the matrix A and adjB represents the adjoint matrix of matrix B)

Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If Tr(A) gt0 and xyz=(1)/(6) , then the vlaue of x^(3)+8y^(3)+z^(3) is equal to (where, Tr(A), I and A^(T) denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

Let A=[(1,0,3),(0,b,5),(-(1)/(3),0,c)] , where a, b, c are positive integers. If tr(A)=7 , then the greatest value of |A| is (where tr (A) denotes the trace of matric A i.e. the sum of principal diagonal elements of matrix A)

If A is matrix of order 3 such that |A|=5 and B= adj A, then the value of ||A^(-1)|(AB)^(T)| is equal to (where |A| denotes determinant of matrix A. A^(T) denotes transpose of matrix A, A^(-1) denotes inverse of matrix A. adj A denotes adjoint of matrix A)

If A is 2xx2 matrix such that A[{:(" "1),(-1):}]=[{:(-1),(2):}]and A^2[{:(" "1),(-1):}]=[{:(1),(0):}] , then trace of A is (where the trace of the matrix is the sum of all principal diagonal elements of the matrix )

Let M be a square matix of order 3 whose elements are real number and adj(adj M) = [(36,0,-4),(0,6,0),(0,3,6)] , then the absolute value of Tr(M) is [Here, adj P denotes adjoint matrix of P and T_(r) (P) denotes trace of matrix P i.e., sum of all principal diagonal elements of matrix P]

The matrix product satisfies [5, 6, 2].A^(T)=[4, 8, 1, 7, 8] , where A^(T) denotes the transpose of the matrix A. Then the order of the matrix A equal to

Let P{X) denote the power set of X and A = {1,2}, then P(P(A)) contains m elements where m is equal to

Let B be a skew symmetric matrix of order 3times3 with real entries. Given I-B and I+B are non-singular matrices. If A=(I+B)(I-B)^(-1), where det (A)>0 ,then find the value of det(2A)-det(adj(A)) [Note: det(P) denotes determinant of square matrix P and det(adj (P)) denotes determinant of adjoint of square matrix P respectively.]

NTA MOCK TESTS-NTA JEE MOCK TEST 84-MATHEMATICS
  1. Consider I=int(0)^(1)(dx)/(1+x^(5)). Then, I satisfies

    Text Solution

    |

  2. If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…., is (35)/...

    Text Solution

    |

  3. Two circles of radii r1 and r2, are both touching the coordinate axes...

    Text Solution

    |

  4. If a(1), a(2), a(3), a(4), a(5) are consecutive terms of an arithmetic...

    Text Solution

    |

  5. The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)...

    Text Solution

    |

  6. The plane containing the line (x-3)/(2)=(y-b)/(4)=(z-3)/(3) passes thr...

    Text Solution

    |

  7. If A=[(2, 1,-1),(3, 5,2),(1, 6, 1)], then tr(Aadj(adjA)) is equal to (...

    Text Solution

    |

  8. The area (in sq. units) covered by [x-y]=-3 with the coordinate axes i...

    Text Solution

    |

  9. The number of different ways in which five alike dashes and eight a...

    Text Solution

    |

  10. The positive difference between the local maximum value and the local ...

    Text Solution

    |

  11. If B=int(1)/(e^(x)+1)dx=-f(x)+C, where C is the constant of integratio...

    Text Solution

    |

  12. In the equilateral triangle ABC, the equation of the side BC is x+y-2=...

    Text Solution

    |

  13. cos(pi/11) cos((2pi)/11) cos((3pi)/11)....cos((11pi)/11)=

    Text Solution

    |

  14. Let l(1) and l(2) be the two lines which are normal to y^(2)=4x and ta...

    Text Solution

    |

  15. If i^(2)=-1, then for a complex number Z the minimum value of |Z|+|Z-3...

    Text Solution

    |

  16. The value fo lim(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x))is equal to

    Text Solution

    |

  17. The values of 'a' for which the quadraic expression ax^(2)+(a-2)x-2 is...

    Text Solution

    |

  18. A committee of 5 persons is to be randomly selected from a group of 5 ...

    Text Solution

    |

  19. The order of the differential equation of the family of circles touchi...

    Text Solution

    |

  20. Let x^2 + y^2 = r^2 and xy = 1 intersect at A & B in first quadrant, I...

    Text Solution

    |