Home
Class 12
MATHS
If B=int(1)/(e^(x)+1)dx=-f(x)+C, where C...

If `B=int(1)/(e^(x)+1)dx=-f(x)+C`, where C is the constant of integration and `e^(f(0))=2`, then the value of `e^(f(-1))` is

A

4

B

`e+1`

C

`2e`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will start from the integral expression provided and derive the necessary values to find \( e^{f(-1)} \). ### Step 1: Understand the integral expression We are given: \[ B = \int \frac{1}{e^x + 1} \, dx = -f(x) + C \] This means that the integral \( B \) can be expressed in terms of \( f(x) \) and a constant \( C \). ### Step 2: Simplify the integral We can rewrite the integral: \[ B = \int \frac{1}{1 + e^x} \, dx \] To solve this integral, we will use the substitution: \[ t = 1 + e^x \implies e^x = t - 1 \quad \text{and} \quad dx = \frac{dt}{e^x} = \frac{dt}{t - 1} \] Thus, the integral becomes: \[ B = \int \frac{1}{t} \cdot \frac{dt}{t - 1} \] ### Step 3: Break down the integral Now we can separate the fractions: \[ \frac{1}{t(t - 1)} = \frac{1}{t} - \frac{1}{t - 1} \] So, we can write: \[ B = \int \left( \frac{1}{t} - \frac{1}{t - 1} \right) dt \] This gives us: \[ B = \ln |t| - \ln |t - 1| + C = \ln \left( \frac{t}{t - 1} \right) + C \] ### Step 4: Substitute back for \( t \) Now, substituting back \( t = 1 + e^x \): \[ B = \ln \left( \frac{1 + e^x}{e^x} \right) + C = \ln \left( \frac{1 + e^x}{e^x} \right) + C = \ln \left( \frac{1 + e^x}{e^x} \right) + C \] ### Step 5: Relate \( B \) to \( f(x) \) From the original equation: \[ B = -f(x) + C \] We can set: \[ -f(x) = \ln \left( \frac{1 + e^x}{e^x} \right) + C \] Thus: \[ f(x) = -\ln \left( \frac{1 + e^x}{e^x} \right) - C = \ln \left( \frac{e^x}{1 + e^x} \right) - C \] ### Step 6: Find \( f(0) \) We know \( e^{f(0)} = 2 \): \[ f(0) = \ln \left( \frac{e^0}{1 + e^0} \right) - C = \ln \left( \frac{1}{2} \right) - C \] Thus: \[ e^{f(0)} = e^{\ln \left( \frac{1}{2} \right) - C} = \frac{1}{2} e^{-C} \] Setting this equal to 2 gives: \[ \frac{1}{2} e^{-C} = 2 \implies e^{-C} = 4 \implies C = -\ln(4) \] ### Step 7: Find \( f(-1) \) Now we need to find \( f(-1) \): \[ f(-1) = \ln \left( \frac{e^{-1}}{1 + e^{-1}} \right) + \ln(4) \] Calculating: \[ f(-1) = \ln \left( \frac{\frac{1}{e}}{1 + \frac{1}{e}} \right) + \ln(4) = \ln \left( \frac{1}{e} \cdot \frac{e}{e + 1} \right) + \ln(4) = \ln \left( \frac{1}{e + 1} \right) + \ln(4) \] Thus: \[ f(-1) = \ln \left( \frac{4}{e + 1} \right) \] ### Step 8: Calculate \( e^{f(-1)} \) Finally, we find: \[ e^{f(-1)} = \frac{4}{e + 1} \] ### Final Answer Thus, the value of \( e^{f(-1)} \) is: \[ \boxed{\frac{4}{e + 1}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 83

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 85

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is

int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integration.

If the integral I=int(x sqrtx-3x+3sqrtx-1)/(x-2sqrtx+1)dx=f(x)+C (where, x gt0 and C is the constant of integration) and f(1)=(-1)/(3) , then the value of f(9) is equal to

What is int (1)/(1 + e^(x))dx equal to ? where c is a constant of integration

Let int(dx)/(sqrt(x^(2)+1)-x)=f(x)+C such that f(0)=0 and C is the constant of integration, then the value of f(1) is

NTA MOCK TESTS-NTA JEE MOCK TEST 84-MATHEMATICS
  1. Consider I=int(0)^(1)(dx)/(1+x^(5)). Then, I satisfies

    Text Solution

    |

  2. If the sum to infinty of the series , 1+4x+7x^(2)+10x^(3)+…., is (35)/...

    Text Solution

    |

  3. Two circles of radii r1 and r2, are both touching the coordinate axes...

    Text Solution

    |

  4. If a(1), a(2), a(3), a(4), a(5) are consecutive terms of an arithmetic...

    Text Solution

    |

  5. The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)...

    Text Solution

    |

  6. The plane containing the line (x-3)/(2)=(y-b)/(4)=(z-3)/(3) passes thr...

    Text Solution

    |

  7. If A=[(2, 1,-1),(3, 5,2),(1, 6, 1)], then tr(Aadj(adjA)) is equal to (...

    Text Solution

    |

  8. The area (in sq. units) covered by [x-y]=-3 with the coordinate axes i...

    Text Solution

    |

  9. The number of different ways in which five alike dashes and eight a...

    Text Solution

    |

  10. The positive difference between the local maximum value and the local ...

    Text Solution

    |

  11. If B=int(1)/(e^(x)+1)dx=-f(x)+C, where C is the constant of integratio...

    Text Solution

    |

  12. In the equilateral triangle ABC, the equation of the side BC is x+y-2=...

    Text Solution

    |

  13. cos(pi/11) cos((2pi)/11) cos((3pi)/11)....cos((11pi)/11)=

    Text Solution

    |

  14. Let l(1) and l(2) be the two lines which are normal to y^(2)=4x and ta...

    Text Solution

    |

  15. If i^(2)=-1, then for a complex number Z the minimum value of |Z|+|Z-3...

    Text Solution

    |

  16. The value fo lim(xrarr0)(1-cos^(4)x)/((sin^(2)xcos x))is equal to

    Text Solution

    |

  17. The values of 'a' for which the quadraic expression ax^(2)+(a-2)x-2 is...

    Text Solution

    |

  18. A committee of 5 persons is to be randomly selected from a group of 5 ...

    Text Solution

    |

  19. The order of the differential equation of the family of circles touchi...

    Text Solution

    |

  20. Let x^2 + y^2 = r^2 and xy = 1 intersect at A & B in first quadrant, I...

    Text Solution

    |