Home
Class 12
MATHS
The number of values of the parameter al...

The number of values of the parameter `alpha in [0, 2pi]` for which the quadratic function `(sin alpha)x^(2)+(2cosalpha)x+(1)/(2)(cos alpha+sinalpha)` is the square of a linear funcion is

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the number of values of the parameter \( \alpha \) in the interval \([0, 2\pi]\) for which the quadratic function \[ f(x) = (\sin \alpha)x^2 + (2\cos \alpha)x + \frac{1}{2}(\cos \alpha + \sin \alpha) \] is a perfect square of a linear function. ### Step 1: Identify the condition for a quadratic to be a perfect square A quadratic function \( ax^2 + bx + c \) is a perfect square if it can be expressed in the form \( (px + q)^2 \). This means that the discriminant must be zero: \[ D = b^2 - 4ac = 0 \] ### Step 2: Calculate the coefficients For our quadratic function, we identify: - \( a = \sin \alpha \) - \( b = 2\cos \alpha \) - \( c = \frac{1}{2}(\cos \alpha + \sin \alpha) \) ### Step 3: Set up the discriminant condition The discriminant \( D \) can be calculated as follows: \[ D = (2\cos \alpha)^2 - 4(\sin \alpha)\left(\frac{1}{2}(\cos \alpha + \sin \alpha)\right) \] Calculating this gives: \[ D = 4\cos^2 \alpha - 2\sin \alpha(\cos \alpha + \sin \alpha) \] ### Step 4: Simplify the discriminant Expanding the second term: \[ D = 4\cos^2 \alpha - 2\sin \alpha \cos \alpha - 2\sin^2 \alpha \] Rearranging gives: \[ D = 4\cos^2 \alpha - 2\sin \alpha \cos \alpha - 2\sin^2 \alpha \] ### Step 5: Set the discriminant to zero Setting \( D = 0 \): \[ 4\cos^2 \alpha - 2\sin \alpha \cos \alpha - 2\sin^2 \alpha = 0 \] ### Step 6: Factor the equation This can be rearranged as: \[ 2\cos^2 \alpha - \sin \alpha \cos \alpha - \sin^2 \alpha = 0 \] ### Step 7: Solve for \( \cot \alpha \) Dividing through by \( \sin^2 \alpha \) (assuming \( \sin \alpha \neq 0 \)) gives: \[ 2\cot^2 \alpha - \cot \alpha - 1 = 0 \] Letting \( y = \cot \alpha \), we have: \[ 2y^2 - y - 1 = 0 \] ### Step 8: Use the quadratic formula Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ y = \frac{1 \pm \sqrt{1^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} = \frac{1 \pm \sqrt{1 + 8}}{4} = \frac{1 \pm 3}{4} \] This gives: \[ y = 1 \quad \text{or} \quad y = -\frac{1}{2} \] ### Step 9: Find \( \alpha \) values 1. For \( \cot \alpha = 1 \): - \( \alpha = \frac{\pi}{4}, \frac{5\pi}{4} \) 2. For \( \cot \alpha = -\frac{1}{2} \): - \( \alpha = \tan^{-1}(-2) \) gives two angles in \([0, 2\pi]\). ### Step 10: Count the solutions Thus, we have: - 2 solutions from \( \cot \alpha = 1 \) - 2 solutions from \( \cot \alpha = -\frac{1}{2} \) ### Conclusion The total number of values of \( \alpha \) in the interval \([0, 2\pi]\) for which the quadratic function is a perfect square is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 84

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 86

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The number of values of alpha in [-10pi, 10pi] for which the equations (sin alpha)x-(cos alpha)y+3z=0, (cos alpha)x+(sin alpha)y-2z=0 and 2x+3y+(cos alpha)z=0 have nontrivial solution is

If (3 pi)/(4)

The number of values of alpha in [0,2 pi] for which 2sin^(3)alpha-7sin^(2)alpha+7sin alpha=2, is:

The minimum integral value of alpha for which the quadratic equation (cot^(-1)alpha)x^(2)-(tan^(-1)alpha)^(3//2)x+2(cot^(-1)alpha)^(2)=0 has both positive roots

If : sin(alpha//2)cos(alpha//2)=12/25. then: sinalpha=

The value of parameter alpha, for which the function f(x)=1+alpha x,alpha!=0 is the inverse of itself

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

NTA MOCK TESTS-NTA JEE MOCK TEST 85-MATHEMATICS
  1. The point of intersection of the tangent to the parabola y^(2)=4x whic...

    Text Solution

    |

  2. The solution of the differential equation (dy)/(dx)=(x-y)/(x-3y) is (w...

    Text Solution

    |

  3. The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c, (where, c...

    Text Solution

    |

  4. If veca and vecb are unit vectors making an angle alpha with each othe...

    Text Solution

    |

  5. If A and B are two matrices of order 3xx3 satisfying AB=A and BA=B, th...

    Text Solution

    |

  6. Consider the line L:(x-1)/(2)=(y-1)/(-3)=(z+10)/(8) and a family of pl...

    Text Solution

    |

  7. A purse contains three 10 paise, three 50 paise and ten 1 rupee coins....

    Text Solution

    |

  8. The number of solutions to x+y+z=10, where 1le x, y, z le 6 and x, y, ...

    Text Solution

    |

  9. The number of values of the parameter alpha in [0, 2pi] for which the ...

    Text Solution

    |

  10. The value of lim(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is e...

    Text Solution

    |

  11. Three positive acute angles alpha, beta and gamma satisfy the relation...

    Text Solution

    |

  12. If p, q, r, s in R, then equaton (x^2 + px + 3q) (-x^2 + rx + q) (-x...

    Text Solution

    |

  13. Let f:RtoR be a function defined as f(x)={(5,"if", xle1),(a+bx,"if", 1...

    Text Solution

    |

  14. If S(n)=n^(2)a+(n)/(4)(n-1)d is the sum of the first n terms of an ari...

    Text Solution

    |

  15. Which of the statements is not a fallacy?

    Text Solution

    |

  16. The product of all the values of |lambda|, such that the lines x+2y-...

    Text Solution

    |

  17. Let f(x)=2tan^(3)x-6tan^(2)x+1+sgn(e^(x)),AA x in [-(pi)/(4),(pi)/(4)]...

    Text Solution

    |

  18. Let |A|=|a(ij)|(3xx3) ne0 Each element a(ij) is multiplied by by k^(i...

    Text Solution

    |

  19. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+………+C(n)x^(n) AA n in N and (C(0)^(2...

    Text Solution

    |

  20. The tops of two poles of height 40 m and 25 m are connected by a wire ...

    Text Solution

    |