Home
Class 12
MATHS
Three positive acute angles alpha, beta ...

Three positive acute angles `alpha, beta and gamma` satisfy the relation `tan. (beta)/(2)=(1)/(3)cot.(alpha)/(2)and cot.(gamma)/(2)=(1)/(2)(3tan.(alpha)/(2)+cot.(alpha)/(2))`. Then, the value of `alpha+beta+gamma` is equal to

A

`pi`

B

`2pi`

C

`(pi)/(2)`

D

`(3pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations step by step. ### Step 1: Understand the given equations We are given two relations involving the angles \( \alpha, \beta, \) and \( \gamma \): 1. \(\tan\left(\frac{\beta}{2}\right) = \frac{1}{3} \cot\left(\frac{\alpha}{2}\right)\) 2. \(\cot\left(\frac{\gamma}{2}\right) = \frac{1}{2}\left(3\tan\left(\frac{\alpha}{2}\right) + \cot\left(\frac{\alpha}{2}\right)\right)\) ### Step 2: Rewrite cotangent in terms of tangent Using the identity \( \cot(x) = \frac{1}{\tan(x)} \), we can rewrite the first equation: \[ \tan\left(\frac{\beta}{2}\right) = \frac{1}{3} \cdot \frac{1}{\tan\left(\frac{\alpha}{2}\right)} = \frac{1}{3\tan\left(\frac{\alpha}{2}\right)} \] ### Step 3: Substitute into the first equation Let \( x = \tan\left(\frac{\alpha}{2}\right) \) and \( y = \tan\left(\frac{\beta}{2}\right) \): \[ y = \frac{1}{3x} \] ### Step 4: Substitute into the second equation Now, substitute \( y \) into the second equation: \[ \cot\left(\frac{\gamma}{2}\right) = \frac{1}{2}\left(3x + \frac{1}{x}\right) \] This can be rewritten as: \[ \cot\left(\frac{\gamma}{2}\right) = \frac{3x^2 + 1}{2x} \] ### Step 5: Use the identity for tangent addition Using the tangent addition formula: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\beta}{2}\right)}{1 - \tan\left(\frac{\alpha}{2}\right) \tan\left(\frac{\beta}{2}\right)} \] Substituting \( y \): \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{x + \frac{1}{3x}}{1 - x \cdot \frac{1}{3x}} = \frac{x + \frac{1}{3x}}{1 - \frac{1}{3}} = \frac{x + \frac{1}{3x}}{\frac{2}{3}} = \frac{3}{2}\left(x + \frac{1}{3x}\right) \] ### Step 6: Relate to \( \cot\left(\frac{\gamma}{2}\right) \) From the previous steps, we know: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \cot\left(\frac{\gamma}{2}\right) \] This implies: \[ \tan\left(\frac{\alpha + \beta}{2}\right) = \frac{2x}{3} \] ### Step 7: Set up the final equation We now have: \[ \tan\left(\frac{\alpha + \beta + \gamma}{2}\right) = \infty \] This implies: \[ \frac{\alpha + \beta + \gamma}{2} = \frac{\pi}{2} \] Thus, multiplying by 2 gives: \[ \alpha + \beta + \gamma = \pi \] ### Final Answer The value of \( \alpha + \beta + \gamma \) is \( \pi \). ---
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 84

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 86

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then Triangle is

If the angles alpha, beta, gamma of a triangle satisfy the relation, sin((alpha-beta)/(2)) + sin ((alpha -gamma)/(2)) + sin((3alpha)/(2)) = (3)/(2) , then The measure of the smallest angle of the triangle is

If each of alpha beta and gamma is a positive acute angle such that sin(alpha+beta-gamma)=(1)/(2)cos(beta+gamma-alpha)=(1)/(2) and tan(gamma+alpha-beta)=1 find the values of alpha,beta and gamma

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is

If alpha+beta=(pi)/(2) and beta+gamma=alpha then tan alpha=

If alpha+beta=(pi)/(2) and beta+gamma=alpha then tan a equals-

If alpha+ beta + gamma=90^(@) , then tan alpha+ tan beta + tan alpha tan beta cot gamma is __________

If sin^(2)alpha+sin^(2)beta+cos^(2)gamma=3 then find tan((alpha+beta+gamma)/(4))+cot((alpha+beta+gamma)/(4)) .

NTA MOCK TESTS-NTA JEE MOCK TEST 85-MATHEMATICS
  1. The point of intersection of the tangent to the parabola y^(2)=4x whic...

    Text Solution

    |

  2. The solution of the differential equation (dy)/(dx)=(x-y)/(x-3y) is (w...

    Text Solution

    |

  3. The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c, (where, c...

    Text Solution

    |

  4. If veca and vecb are unit vectors making an angle alpha with each othe...

    Text Solution

    |

  5. If A and B are two matrices of order 3xx3 satisfying AB=A and BA=B, th...

    Text Solution

    |

  6. Consider the line L:(x-1)/(2)=(y-1)/(-3)=(z+10)/(8) and a family of pl...

    Text Solution

    |

  7. A purse contains three 10 paise, three 50 paise and ten 1 rupee coins....

    Text Solution

    |

  8. The number of solutions to x+y+z=10, where 1le x, y, z le 6 and x, y, ...

    Text Solution

    |

  9. The number of values of the parameter alpha in [0, 2pi] for which the ...

    Text Solution

    |

  10. The value of lim(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is e...

    Text Solution

    |

  11. Three positive acute angles alpha, beta and gamma satisfy the relation...

    Text Solution

    |

  12. If p, q, r, s in R, then equaton (x^2 + px + 3q) (-x^2 + rx + q) (-x...

    Text Solution

    |

  13. Let f:RtoR be a function defined as f(x)={(5,"if", xle1),(a+bx,"if", 1...

    Text Solution

    |

  14. If S(n)=n^(2)a+(n)/(4)(n-1)d is the sum of the first n terms of an ari...

    Text Solution

    |

  15. Which of the statements is not a fallacy?

    Text Solution

    |

  16. The product of all the values of |lambda|, such that the lines x+2y-...

    Text Solution

    |

  17. Let f(x)=2tan^(3)x-6tan^(2)x+1+sgn(e^(x)),AA x in [-(pi)/(4),(pi)/(4)]...

    Text Solution

    |

  18. Let |A|=|a(ij)|(3xx3) ne0 Each element a(ij) is multiplied by by k^(i...

    Text Solution

    |

  19. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+………+C(n)x^(n) AA n in N and (C(0)^(2...

    Text Solution

    |

  20. The tops of two poles of height 40 m and 25 m are connected by a wire ...

    Text Solution

    |