Home
Class 12
MATHS
If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+………+C(...

If `(1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+………+C_(n)x^(n) AA n in N` and `(C_(0)^(2))/(1)+(C_(1)^(2))/(2)+(C_(2)^(2))/(3)+……..+(C_(n)^(2))/(n+1)=(lambda(2n+1)!)/((n+1)!)^(2),` then the vlaue of `lambda` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given expression: \[ (1+x)^{n} = C_{0} + C_{1}x + C_{2}x^{2} + \ldots + C_{n}x^{n} \] where \( C_{r} = \binom{n}{r} \) for \( r = 0, 1, 2, \ldots, n \). We need to evaluate the sum: \[ \frac{C_{0}^{2}}{1} + \frac{C_{1}^{2}}{2} + \frac{C_{2}^{2}}{3} + \ldots + \frac{C_{n}^{2}}{n+1} \] This can be expressed as: \[ \sum_{r=0}^{n} \frac{C_{r}^{2}}{r+1} \] Using the identity \( C_{r}^{2} = \binom{n}{r} \binom{n}{r} \), we can rewrite the sum as: \[ \sum_{r=0}^{n} \frac{\binom{n}{r} \binom{n}{r}}{r+1} \] Next, we can use the identity: \[ \frac{C_{r}^{2}}{r+1} = \frac{1}{n+1} \binom{n+1}{r+1} \binom{n}{r} \] This allows us to express the sum as: \[ \frac{1}{n+1} \sum_{r=0}^{n} \binom{n+1}{r+1} \binom{n}{r} \] Now, we can change the index of summation by letting \( k = r + 1 \), which gives us: \[ \frac{1}{n+1} \sum_{k=1}^{n+1} \binom{n+1}{k} \binom{n}{k-1} \] Using the Vandermonde identity, we know that: \[ \sum_{k=0}^{m} \binom{x}{k} \binom{y}{m-k} = \binom{x+y}{m} \] Applying this identity here, we have: \[ \sum_{k=1}^{n+1} \binom{n+1}{k} \binom{n}{k-1} = \binom{2n+1}{n} \] Thus, we can rewrite our sum as: \[ \frac{1}{n+1} \binom{2n+1}{n} \] Now, substituting this back into the original equation, we have: \[ \frac{1}{n+1} \binom{2n+1}{n} = \lambda \frac{(2n+1)!}{(n+1)!^2} \] Next, we simplify \( \binom{2n+1}{n} \): \[ \binom{2n+1}{n} = \frac{(2n+1)!}{n!(n+1)!} \] Substituting this into our equation gives: \[ \frac{1}{n+1} \cdot \frac{(2n+1)!}{n!(n+1)!} = \lambda \frac{(2n+1)!}{(n+1)!^2} \] Cancelling \( (2n+1)! \) from both sides, we get: \[ \frac{1}{n! (n+1)} = \lambda \] Thus, the value of \( \lambda \) is: \[ \lambda = \frac{1}{n! (n+1)} \] ### Summary of Steps: 1. Start with the binomial expansion of \( (1+x)^{n} \). 2. Write the sum \( \sum_{r=0}^{n} \frac{C_{r}^{2}}{r+1} \). 3. Use the identity for \( C_{r}^{2} \) to rewrite the sum. 4. Change the index of summation and apply the Vandermonde identity. 5. Simplify to find \( \lambda \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 84

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 86

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then the value of (C_(0))^(2)+((C_(1))^(2))/(2)+((C_(2))^(2))/(3)+...+((C_(n))^(2))/(n+1) is equal to

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then for n odd ,C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+...+(-1)C_(n)^(2), is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + ... + C_(n) x^(n) , then value of C_(0)^(2) + 2C_(1)^(2) + 3C_(2)^(2) + ... + (n + 1) C^(2)n is

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + C_(3) x^(3) + …+ C_(n) x^(n) prove that (C_(0))/(1) + (C_(2))/(3) + (C_(4))/(5) + ...= (2^(n))/(n+1) .

If (1+x)^(n) = C_(0)+C_(1)x + C_(2) x^(2) +...+C_(n)x^(n) then C_(0)""^(2)+C_(1)""^(2) + C_(2)""^(2) +...+C_(n)""^(2) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - (C_(1))/(2) + (C_(2))/(3) -…+ (-1)^(n) (C_(n))/(n+1) = (1)/(n+1) .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+...+C_(n)x^(n) then 2C_(0)+(C_(1))/(2)+2^(3)(C_(2))/(3)+...+2^(n+1)(C_(n))/(n+1)=

NTA MOCK TESTS-NTA JEE MOCK TEST 85-MATHEMATICS
  1. The point of intersection of the tangent to the parabola y^(2)=4x whic...

    Text Solution

    |

  2. The solution of the differential equation (dy)/(dx)=(x-y)/(x-3y) is (w...

    Text Solution

    |

  3. The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c, (where, c...

    Text Solution

    |

  4. If veca and vecb are unit vectors making an angle alpha with each othe...

    Text Solution

    |

  5. If A and B are two matrices of order 3xx3 satisfying AB=A and BA=B, th...

    Text Solution

    |

  6. Consider the line L:(x-1)/(2)=(y-1)/(-3)=(z+10)/(8) and a family of pl...

    Text Solution

    |

  7. A purse contains three 10 paise, three 50 paise and ten 1 rupee coins....

    Text Solution

    |

  8. The number of solutions to x+y+z=10, where 1le x, y, z le 6 and x, y, ...

    Text Solution

    |

  9. The number of values of the parameter alpha in [0, 2pi] for which the ...

    Text Solution

    |

  10. The value of lim(xrarr1^(-))(sqrtpi-sqrt(4tan^(-1)x))/(sqrt(1-x)) is e...

    Text Solution

    |

  11. Three positive acute angles alpha, beta and gamma satisfy the relation...

    Text Solution

    |

  12. If p, q, r, s in R, then equaton (x^2 + px + 3q) (-x^2 + rx + q) (-x...

    Text Solution

    |

  13. Let f:RtoR be a function defined as f(x)={(5,"if", xle1),(a+bx,"if", 1...

    Text Solution

    |

  14. If S(n)=n^(2)a+(n)/(4)(n-1)d is the sum of the first n terms of an ari...

    Text Solution

    |

  15. Which of the statements is not a fallacy?

    Text Solution

    |

  16. The product of all the values of |lambda|, such that the lines x+2y-...

    Text Solution

    |

  17. Let f(x)=2tan^(3)x-6tan^(2)x+1+sgn(e^(x)),AA x in [-(pi)/(4),(pi)/(4)]...

    Text Solution

    |

  18. Let |A|=|a(ij)|(3xx3) ne0 Each element a(ij) is multiplied by by k^(i...

    Text Solution

    |

  19. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+………+C(n)x^(n) AA n in N and (C(0)^(2...

    Text Solution

    |

  20. The tops of two poles of height 40 m and 25 m are connected by a wire ...

    Text Solution

    |