Home
Class 12
MATHS
The function f(x)=e^(sinx+cosx)AA x in [...

The function `f(x)=e^(sinx+cosx)AA x in [0, 2pi]` attains local extrema at `x=alpha and x= beta,` then `alpha+beta` is equal to

A

`pi`

B

`2pi`

C

`(3pi)/(2)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the local extrema of the function \( f(x) = e^{\sin x + \cos x} \) on the interval \( [0, 2\pi] \) and then determine the sum \( \alpha + \beta \) where \( \alpha \) and \( \beta \) are the points of local extrema. ### Step 1: Find the derivative of \( f(x) \) Using the chain rule, we differentiate \( f(x) \): \[ f'(x) = e^{\sin x + \cos x} \cdot (\cos x - \sin x) \] ### Step 2: Set the derivative equal to zero To find the critical points, we set the derivative equal to zero: \[ e^{\sin x + \cos x} \cdot (\cos x - \sin x) = 0 \] Since \( e^{\sin x + \cos x} \) is never zero, we focus on the term \( \cos x - \sin x = 0 \): \[ \cos x = \sin x \] ### Step 3: Solve for \( x \) The equation \( \cos x = \sin x \) implies: \[ \tan x = 1 \] The solutions for \( x \) in the interval \( [0, 2\pi] \) are: \[ x = \frac{\pi}{4} \quad \text{and} \quad x = \frac{5\pi}{4} \] ### Step 4: Identify the local extrema We have found the critical points \( \alpha = \frac{\pi}{4} \) and \( \beta = \frac{5\pi}{4} \). To determine which is a maximum and which is a minimum, we can use the second derivative test. ### Step 5: Find the second derivative \( f''(x) \) To find \( f''(x) \), we differentiate \( f'(x) \): Using the product rule: \[ f''(x) = \frac{d}{dx} \left( e^{\sin x + \cos x} \cdot (\cos x - \sin x) \right) \] This gives us: \[ f''(x) = e^{\sin x + \cos x} \cdot (\cos x - \sin x)^2 + e^{\sin x + \cos x} \cdot (-\sin x - \cos x) \] ### Step 6: Evaluate the second derivative at critical points 1. For \( x = \frac{\pi}{4} \): \[ f''\left(\frac{\pi}{4}\right) < 0 \quad \text{(indicating a local maximum)} \] 2. For \( x = \frac{5\pi}{4} \): \[ f''\left(\frac{5\pi}{4}\right) > 0 \quad \text{(indicating a local minimum)} \] ### Step 7: Calculate \( \alpha + \beta \) Now we can find \( \alpha + \beta \): \[ \alpha + \beta = \frac{\pi}{4} + \frac{5\pi}{4} = \frac{6\pi}{4} = \frac{3\pi}{2} \] ### Final Answer Thus, the value of \( \alpha + \beta \) is: \[ \boxed{\frac{3\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 85

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 87

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If int_(-pi/2)^(pi/2) frac {8 sqrt 2 cos x dx}{(1 e^(sin x)) (1 sin^4 x)} = alpha pi beta log_e(3 2 sqrt 2) , where alpha , beta are integers, then alpha^2 beta^2 equals ___________.

If alpha and beta are the roots of the equation x^(2)-2x+4=0, then alpha^(9)+beta^(9) is equal to

If alpha, beta in C are the distinct roots of the equation x^(2)-x+1=0 , then alpha^(101)+beta^(107) is equal to

If the function f(x)=x^(3)+alpha x^(2)+beta x+1 has maximum value at x=0 and minimum value at x=1, then (i)alpha=(2)/(3),beta=0 (ii) alpha=-(3)/(2),beta=0(iii)alpha=0,beta=(3)/(2)(iv) none of these

NTA MOCK TESTS-NTA JEE MOCK TEST 86-MATHEMATICS
  1. A line passing through the point (2, 2) encloses an area of 4 sq. unit...

    Text Solution

    |

  2. The angle between the chords of the circle x^2 + y^2 = 100, which pass...

    Text Solution

    |

  3. Let the focus S of the parabola y^(2)=8x lie on the focal chord PQ of ...

    Text Solution

    |

  4. If the tangents PQ and PR are drawn from a variable point P to the ell...

    Text Solution

    |

  5. Let f(x)={{:("max"{|x|","x^(2)},|x|le3),(12-|x|,3lt|x|le12):}. If S is...

    Text Solution

    |

  6. Let a function f:(0,infty)to[0,infty) be defined by f(x)=abs(1-1/x). T...

    Text Solution

    |

  7. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  8. A flagstaff stands vertically on a pillar, the height of the flagstaff...

    Text Solution

    |

  9. The function f(x)=e^(sinx+cosx)AA x in [0, 2pi] attains local extrema ...

    Text Solution

    |

  10. If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the con...

    Text Solution

    |

  11. If the curve satisfying differential equation xdy=(y+x^(3))dx passes ...

    Text Solution

    |

  12. If the system of equations (.^(n)C(3))x+(.^(n)C(4))y+35z=0, (.^(n)C(4)...

    Text Solution

    |

  13. A box contains 3 coins B(1), B(2),B(3) and the probability of getting ...

    Text Solution

    |

  14. Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that A...

    Text Solution

    |

  15. If a line passing through (-2, 1, alpha) and (4, 1, 2) is perpendicula...

    Text Solution

    |

  16. If (1^(2)-a(1))+(2^(2)-a(2))+(3^(2)-a(3))+…..+(n^(2)-a(n))=(1)/(3)n(n^...

    Text Solution

    |

  17. If Im((iz+2)/(z+i))=-1 represents part of a circle with radius r units...

    Text Solution

    |

  18. For a sample size of 10 observations x(1), x(2),...... x(10), if Sigma...

    Text Solution

    |

  19. If int(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the valu...

    Text Solution

    |

  20. A line (x-a)/(2)=(y-b)/(3)=(z-c)/(4) intersects a plane x-y+z=4 at a p...

    Text Solution

    |