Home
Class 12
MATHS
If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1...

If `I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C` (where, C is the constant of integration) and `f(2)=(1)/(2)`, then the maximum value of `y=f(sinx)AA x in R` is

A

4

B

2

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given integral and the function \( f(x) \) to find the maximum value of \( y = f(\sin x) \). ### Step 1: Analyze the Integral We start with the integral: \[ I = \int \frac{dx}{x^2 - 2x + 5} \] We can rewrite the denominator: \[ x^2 - 2x + 5 = (x^2 - 2x + 1) + 4 = (x - 1)^2 + 4 \] Thus, we have: \[ I = \int \frac{dx}{(x - 1)^2 + 2^2} \] ### Step 2: Use Substitution Let \( t = x - 1 \), then \( dx = dt \). The integral becomes: \[ I = \int \frac{dt}{t^2 + 2^2} \] This is a standard integral: \[ \int \frac{dt}{a^2 + t^2} = \frac{1}{a} \tan^{-1} \left( \frac{t}{a} \right) + C \] where \( a = 2 \). Therefore, we have: \[ I = \frac{1}{2} \tan^{-1} \left( \frac{t}{2} \right) + C \] ### Step 3: Substitute Back Substituting back \( t = x - 1 \): \[ I = \frac{1}{2} \tan^{-1} \left( \frac{x - 1}{2} \right) + C \] ### Step 4: Define the Function \( f(x) \) From the integral, we can define: \[ f(x) = \frac{x - 1}{2} \] ### Step 5: Given Condition We are given that \( f(2) = \frac{1}{2} \). Let's verify: \[ f(2) = \frac{2 - 1}{2} = \frac{1}{2} \] This condition holds true. ### Step 6: Find Maximum Value of \( y = f(\sin x) \) Now, we need to find the maximum value of: \[ y = f(\sin x) = \frac{\sin x - 1}{2} \] The sine function \( \sin x \) varies between -1 and 1. Therefore, we analyze: \[ \sin x - 1 \text{ varies from } -2 \text{ (when } \sin x = -1) \text{ to } 0 \text{ (when } \sin x = 1) \] Dividing by 2 gives: \[ \frac{\sin x - 1}{2} \text{ varies from } -1 \text{ to } 0 \] ### Step 7: Conclusion Thus, the maximum value of \( y = f(\sin x) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 85

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 87

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let I=int(dx)/(1+3sin^(2)x)=(1)/(2)tan^(-1)(2f(x))+C (where, C is the constant of integration). If f((pi)/(4))=1 , then the fundamental period of y=f(x) is

If I=int(1+x^(4))/((1-x^(4))^((3)/(2)))dx=(1)/(sqrt(f(x)))+C (where, C is the constant of integration) and f(2)=(-15)/(4) , then the value of 2f((1)/(sqrt2)) is

If I=int(dx)/(x^(2)sqrt(1+x^(2)))=(f(x))/(x)+C, (AA x gt0) (where, C is the constant of integration) and f(1)=-sqrt2 , then the value of |f(sqrt3)| is

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

If B=int(1)/(e^(x)+1)dx=-f(x)+C , where C is the constant of integration and e^(f(0))=2 , then the value of e^(f(-1)) is

If int(dx)/(sqrt(e^(x)-1))=2tan^(-1)(f(x))+C , (where x gt0 and C is the constant of integration ) then the range of f(x) is

If intf(x)dx=3[f(x)]^(2)+c (where c is the constant of integration) and f(1)=(1)/(6) , then f(6pi) is equal to

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

If I=int(tan^(-1)(e^(x)))/(e^(x)+e^(-x))dx=([tan^(-1)(f(x))]^(2))/(2)+C (where C is the constant of integration), then the range of y=f(x) AA x in R is

If int(dx)/(x^(2)+x)=ln|f(x)|+C (where C is the constant of integration), then the range of y=f(x), AA x in R-{-1, 0} is

NTA MOCK TESTS-NTA JEE MOCK TEST 86-MATHEMATICS
  1. A line passing through the point (2, 2) encloses an area of 4 sq. unit...

    Text Solution

    |

  2. The angle between the chords of the circle x^2 + y^2 = 100, which pass...

    Text Solution

    |

  3. Let the focus S of the parabola y^(2)=8x lie on the focal chord PQ of ...

    Text Solution

    |

  4. If the tangents PQ and PR are drawn from a variable point P to the ell...

    Text Solution

    |

  5. Let f(x)={{:("max"{|x|","x^(2)},|x|le3),(12-|x|,3lt|x|le12):}. If S is...

    Text Solution

    |

  6. Let a function f:(0,infty)to[0,infty) be defined by f(x)=abs(1-1/x). T...

    Text Solution

    |

  7. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  8. A flagstaff stands vertically on a pillar, the height of the flagstaff...

    Text Solution

    |

  9. The function f(x)=e^(sinx+cosx)AA x in [0, 2pi] attains local extrema ...

    Text Solution

    |

  10. If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the con...

    Text Solution

    |

  11. If the curve satisfying differential equation xdy=(y+x^(3))dx passes ...

    Text Solution

    |

  12. If the system of equations (.^(n)C(3))x+(.^(n)C(4))y+35z=0, (.^(n)C(4)...

    Text Solution

    |

  13. A box contains 3 coins B(1), B(2),B(3) and the probability of getting ...

    Text Solution

    |

  14. Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that A...

    Text Solution

    |

  15. If a line passing through (-2, 1, alpha) and (4, 1, 2) is perpendicula...

    Text Solution

    |

  16. If (1^(2)-a(1))+(2^(2)-a(2))+(3^(2)-a(3))+…..+(n^(2)-a(n))=(1)/(3)n(n^...

    Text Solution

    |

  17. If Im((iz+2)/(z+i))=-1 represents part of a circle with radius r units...

    Text Solution

    |

  18. For a sample size of 10 observations x(1), x(2),...... x(10), if Sigma...

    Text Solution

    |

  19. If int(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the valu...

    Text Solution

    |

  20. A line (x-a)/(2)=(y-b)/(3)=(z-c)/(4) intersects a plane x-y+z=4 at a p...

    Text Solution

    |