Home
Class 12
MATHS
Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)...

Let `A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)]` are two matrices such that AB = BA and `r ne 0`, then the value of `(3p-3s)/(5q-4r)` is equal to

A

`(3)/(2)`

B

4

C

`(9)/(2)`

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((3p - 3s) / (5q - 4r)\) given that the matrices \(A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\) and \(B = \begin{pmatrix} p & q \\ r & s \end{pmatrix}\) commute (i.e., \(AB = BA\)) and \(r \neq 0\). ### Step-by-Step Solution: 1. **Matrix Multiplication**: We start by calculating \(AB\) and \(BA\): \[ AB = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} 1p + 2r & 1q + 2s \\ 3p + 4r & 3q + 4s \end{pmatrix} \] \[ BA = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} p + 3q & 2p + 4q \\ r + 3s & 2r + 4s \end{pmatrix} \] 2. **Setting Up the Equations**: Since \(AB = BA\), we can set the corresponding elements equal to each other: - From the first element: \[ p + 2r = p + 3q \implies 2r = 3q \implies q = \frac{2r}{3} \] - From the second element: \[ 1q + 2s = 2p + 4q \implies q + 2s = 2p + 4q \implies 2s - 2p = 3q \implies 2s = 2p + 3q \] - Substitute \(q\) from the first equation: \[ 2s = 2p + 3\left(\frac{2r}{3}\right) \implies 2s = 2p + 2r \implies s = p + r \] - From the third element: \[ 3p + 4r = r + 3s \implies 3p + 4r = r + 3(p + r) \implies 3p + 4r = r + 3p + 3r \implies 4r = 4r \] - This equation is always true, confirming our previous results. 3. **Finding the Expression**: Now we need to calculate \((3p - 3s) / (5q - 4r)\): - Substitute \(s = p + r\) into \(3p - 3s\): \[ 3p - 3s = 3p - 3(p + r) = 3p - 3p - 3r = -3r \] - Substitute \(q = \frac{2r}{3}\) into \(5q - 4r\): \[ 5q - 4r = 5\left(\frac{2r}{3}\right) - 4r = \frac{10r}{3} - 4r = \frac{10r}{3} - \frac{12r}{3} = -\frac{2r}{3} \] 4. **Final Calculation**: Now substituting back into the expression: \[ \frac{3p - 3s}{5q - 4r} = \frac{-3r}{-\frac{2r}{3}} = \frac{-3r \cdot 3}{-2r} = \frac{9}{2} \] ### Conclusion: The value of \(\frac{3p - 3s}{5q - 4r}\) is \(\frac{9}{2}\).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 85

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 87

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If p = 4, q= 3 and r = -2 find the value of p^(2)+q^(2)-r^(2)

Let P(2,-1,4) and Q(4,3,2) are two points and as point R on PQ is such that 3PQ=5QR , then the coordinates of R are

If p=4 , q=-3, r=2 find the value of 4p^2+5q-12r

If P(4,7), Q(7,2) R(a,b) and S(3,8) are the vertices of a parallelogram then find the value of a and b.

If X=[{:(3,-4),(1,-1):}],B=[{:(5,2),(-2,1):}]and A=[{:(p,q),(r,s):}] satisfy the equation AX = B, then the matrix A is equal to

Let A={p,q,r,s} and B ={q,r,p,s } , Are A and B equal ?

X=[{:(3,-4),(1,-1):}],B=[{:(5,2),(-2,1):}] and A=[{:(p,q),(r,s):}] the equation AX=B then the matrix A is equal to :

If P(p), Q(q), R(r) and S(s) be four points such that 3p+8q=6r+5s then the lines PQ and RS are

If 2p+3q+4r=15, the maximum value of p^(3)q^(5)r^(7) will be

NTA MOCK TESTS-NTA JEE MOCK TEST 86-MATHEMATICS
  1. A line passing through the point (2, 2) encloses an area of 4 sq. unit...

    Text Solution

    |

  2. The angle between the chords of the circle x^2 + y^2 = 100, which pass...

    Text Solution

    |

  3. Let the focus S of the parabola y^(2)=8x lie on the focal chord PQ of ...

    Text Solution

    |

  4. If the tangents PQ and PR are drawn from a variable point P to the ell...

    Text Solution

    |

  5. Let f(x)={{:("max"{|x|","x^(2)},|x|le3),(12-|x|,3lt|x|le12):}. If S is...

    Text Solution

    |

  6. Let a function f:(0,infty)to[0,infty) be defined by f(x)=abs(1-1/x). T...

    Text Solution

    |

  7. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  8. A flagstaff stands vertically on a pillar, the height of the flagstaff...

    Text Solution

    |

  9. The function f(x)=e^(sinx+cosx)AA x in [0, 2pi] attains local extrema ...

    Text Solution

    |

  10. If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the con...

    Text Solution

    |

  11. If the curve satisfying differential equation xdy=(y+x^(3))dx passes ...

    Text Solution

    |

  12. If the system of equations (.^(n)C(3))x+(.^(n)C(4))y+35z=0, (.^(n)C(4)...

    Text Solution

    |

  13. A box contains 3 coins B(1), B(2),B(3) and the probability of getting ...

    Text Solution

    |

  14. Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that A...

    Text Solution

    |

  15. If a line passing through (-2, 1, alpha) and (4, 1, 2) is perpendicula...

    Text Solution

    |

  16. If (1^(2)-a(1))+(2^(2)-a(2))+(3^(2)-a(3))+…..+(n^(2)-a(n))=(1)/(3)n(n^...

    Text Solution

    |

  17. If Im((iz+2)/(z+i))=-1 represents part of a circle with radius r units...

    Text Solution

    |

  18. For a sample size of 10 observations x(1), x(2),...... x(10), if Sigma...

    Text Solution

    |

  19. If int(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the valu...

    Text Solution

    |

  20. A line (x-a)/(2)=(y-b)/(3)=(z-c)/(4) intersects a plane x-y+z=4 at a p...

    Text Solution

    |