Home
Class 12
MATHS
If (1^(2)-a(1))+(2^(2)-a(2))+(3^(2)-a(3)...

If `(1^(2)-a_(1))+(2^(2)-a_(2))+(3^(2)-a_(3))+…..+(n^(2)-a_(n))=(1)/(3)n(n^(2)-1)`, then the value of `a_(7)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a_7 \) given the equation \[ (1^2 - a_1) + (2^2 - a_2) + (3^2 - a_3) + \ldots + (n^2 - a_n) = \frac{1}{3} n (n^2 - 1), \] we can follow these steps: ### Step 1: Rewrite the summation We can rewrite the left-hand side of the equation as: \[ \sum_{i=1}^{n} (i^2 - a_i) = \sum_{i=1}^{n} i^2 - \sum_{i=1}^{n} a_i. \] ### Step 2: Calculate the sum of squares The sum of the first \( n \) squares is given by the formula: \[ \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}. \] ### Step 3: Substitute the sum of squares into the equation Substituting this into our equation gives: \[ \frac{n(n+1)(2n+1)}{6} - \sum_{i=1}^{n} a_i = \frac{1}{3} n (n^2 - 1). \] ### Step 4: Simplify the equation Now we can rearrange the equation to isolate the sum of \( a_i \): \[ \sum_{i=1}^{n} a_i = \frac{n(n+1)(2n+1)}{6} - \frac{1}{3} n (n^2 - 1). \] ### Step 5: Simplify the right-hand side To simplify the right-hand side, we need a common denominator. The term \( \frac{1}{3} n (n^2 - 1) \) can be rewritten as: \[ \frac{1}{3} n (n^2 - 1) = \frac{n(n^2 - 1)}{3} = \frac{n^3 - n}{3}. \] Now we can express both terms with a common denominator of 6: \[ \sum_{i=1}^{n} a_i = \frac{n(n+1)(2n+1)}{6} - \frac{2(n^3 - n)}{6}. \] ### Step 6: Combine the terms Now we can combine the fractions: \[ \sum_{i=1}^{n} a_i = \frac{n(n+1)(2n+1) - 2(n^3 - n)}{6}. \] ### Step 7: Expand and simplify Expanding the numerator: \[ n(n+1)(2n+1) = 2n^3 + 3n^2 + n, \] and substituting this back gives: \[ \sum_{i=1}^{n} a_i = \frac{(2n^3 + 3n^2 + n) - (2n^3 - 2n)}{6} = \frac{5n^2 + 3n}{6}. \] ### Step 8: Find \( a_7 \) To find \( a_7 \), we can express it as: \[ a_7 = \sum_{i=1}^{7} a_i - \sum_{i=1}^{6} a_i. \] Calculating \( \sum_{i=1}^{7} a_i \) and \( \sum_{i=1}^{6} a_i \): \[ \sum_{i=1}^{7} a_i = \frac{5(7^2) + 3(7)}{6} = \frac{5(49) + 21}{6} = \frac{245 + 21}{6} = \frac{266}{6} = \frac{133}{3}. \] \[ \sum_{i=1}^{6} a_i = \frac{5(6^2) + 3(6)}{6} = \frac{5(36) + 18}{6} = \frac{180 + 18}{6} = \frac{198}{6} = 33. \] Now substituting back: \[ a_7 = \frac{133}{3} - 33 = \frac{133}{3} - \frac{99}{3} = \frac{34}{3}. \] ### Final Answer Thus, the value of \( a_7 \) is: \[ \boxed{7}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 85

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 87

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),......,a_(n) are consecutive terms of an increasing A.P.and (1^(2)-a_(1))+(2^(2)a_(2))+(3^(2)a_(3))+.........+(n^(2)-a_(n))=((n-1)*n*(n+1))/(3) then the value of ((a_(5)+a_(3)-a_(2))/(6)) is equal to

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

If A_(1),A_(2),A_(3),………………,A_(n),a_(1),a_(2),a_(3),……a_(n),a,b,c epsilonR show that the roots of the equation (A_(1)^(2))/(x-a_(1))+(A_(2)^(2))/(x-a_(2))+(A_(3)^(2))/(x-a_(3))+…+(A_(n)^(2))/(x-a_(n)) =ab^(2)+c^(2) x+ac are real.

If a_(m) be the mth term of an AP, show that a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-a_(4)^(2)+"...."+a_(2n-1)^(2)-a_(2n)^(2)=(n)/((2n-1))(a_(1)^(2)-a_(2n)^(2)) .

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

Let the sequence a_(1),a_(2),a_(3),...,a_(n) from an A.P.Then the value of a_(1)^(2)-a_(2)^(2)+a_(3)^(2)-...+a_(2n-1)^(2)-a_(2n)^(2) is (2n)/(n-1)(a_(2n)^(2)-a_(1)^(2))(b)(n)/(2n-1)(a_(1)^(2)-a_(2n)^(2))(n)/(n+1)(a_(1)^(2)-a_(2n)^(2))(d)(n)/(n-1)(a_(1)^(2)+a_(2n)^(2))

If a_(1),a_(2),a_(3),...,a_(2n+1) are in A.P.then (a_(2n+1)-a_(1))/(a_(2n+1)+a_(1))+(a_(2n)-a_(2))/(a_(2n)+a_(2))+...+(a_(n+2)-a_(n))/(a_(n+2)+a_(n)) is equal to (n(n+1))/(2)xx(a_(2)-a_(1))/(a_(n+1)) b.(n(n+1))/(2) c.(n+1)(a_(2)-a_(1)) d.none of these

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common rario r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x_(2)+............+a_(2n)x^(2n) then the value of a_(1)+a_(4)+a_(7)+.......

NTA MOCK TESTS-NTA JEE MOCK TEST 86-MATHEMATICS
  1. A line passing through the point (2, 2) encloses an area of 4 sq. unit...

    Text Solution

    |

  2. The angle between the chords of the circle x^2 + y^2 = 100, which pass...

    Text Solution

    |

  3. Let the focus S of the parabola y^(2)=8x lie on the focal chord PQ of ...

    Text Solution

    |

  4. If the tangents PQ and PR are drawn from a variable point P to the ell...

    Text Solution

    |

  5. Let f(x)={{:("max"{|x|","x^(2)},|x|le3),(12-|x|,3lt|x|le12):}. If S is...

    Text Solution

    |

  6. Let a function f:(0,infty)to[0,infty) be defined by f(x)=abs(1-1/x). T...

    Text Solution

    |

  7. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  8. A flagstaff stands vertically on a pillar, the height of the flagstaff...

    Text Solution

    |

  9. The function f(x)=e^(sinx+cosx)AA x in [0, 2pi] attains local extrema ...

    Text Solution

    |

  10. If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the con...

    Text Solution

    |

  11. If the curve satisfying differential equation xdy=(y+x^(3))dx passes ...

    Text Solution

    |

  12. If the system of equations (.^(n)C(3))x+(.^(n)C(4))y+35z=0, (.^(n)C(4)...

    Text Solution

    |

  13. A box contains 3 coins B(1), B(2),B(3) and the probability of getting ...

    Text Solution

    |

  14. Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that A...

    Text Solution

    |

  15. If a line passing through (-2, 1, alpha) and (4, 1, 2) is perpendicula...

    Text Solution

    |

  16. If (1^(2)-a(1))+(2^(2)-a(2))+(3^(2)-a(3))+…..+(n^(2)-a(n))=(1)/(3)n(n^...

    Text Solution

    |

  17. If Im((iz+2)/(z+i))=-1 represents part of a circle with radius r units...

    Text Solution

    |

  18. For a sample size of 10 observations x(1), x(2),...... x(10), if Sigma...

    Text Solution

    |

  19. If int(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the valu...

    Text Solution

    |

  20. A line (x-a)/(2)=(y-b)/(3)=(z-c)/(4) intersects a plane x-y+z=4 at a p...

    Text Solution

    |