Home
Class 12
MATHS
If int(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]...

If `int_(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm),` then the value of m is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{0}^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx = \frac{\pi}{\sqrt{m}}, \] we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in terms of sine and cosine: \[ \sqrt{\tan x} = \sqrt{\frac{\sin x}{\cos x}} \quad \text{and} \quad \sqrt{\cot x} = \sqrt{\frac{\cos x}{\sin x}}. \] Thus, we have: \[ \int_{0}^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx = \int_{0}^{\frac{\pi}{4}} \left( \sqrt{\frac{\sin x}{\cos x}} + \sqrt{\frac{\cos x}{\sin x}} \right) dx. \] ### Step 2: Combine the Terms We can combine the two terms under a common denominator: \[ \sqrt{\tan x} + \sqrt{\cot x} = \frac{\sqrt{\sin x \cos x} + \sqrt{\cos x \sin x}}{\sqrt{\sin x \cos x}} = \frac{2\sqrt{\sin x \cos x}}{\sqrt{\sin x \cos x}} = \frac{2}{\sqrt{\sin x \cos x}}. \] ### Step 3: Change of Variables Now, we can simplify our integral: \[ \int_{0}^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx = 2 \int_{0}^{\frac{\pi}{4}} \frac{1}{\sqrt{\sin x \cos x}} dx. \] ### Step 4: Use the Identity We know that \[ \sin 2x = 2 \sin x \cos x \implies \sin x \cos x = \frac{1}{2} \sin 2x. \] Thus, we can rewrite the integral as: \[ 2 \int_{0}^{\frac{\pi}{4}} \frac{1}{\sqrt{\frac{1}{2} \sin 2x}} dx = 2 \sqrt{2} \int_{0}^{\frac{\pi}{4}} \frac{1}{\sqrt{\sin 2x}} dx. \] ### Step 5: Change of Variables Again Let \( t = \sin 2x \). Then, \( dt = 2 \cos 2x \, dx \) or \( dx = \frac{dt}{2\sqrt{1-t^2}} \). The limits change from \( x = 0 \) to \( x = \frac{\pi}{4} \) which corresponds to \( t = 0 \) to \( t = 1 \). ### Step 6: Evaluate the Integral Now, we can evaluate the integral: \[ 2 \sqrt{2} \int_{0}^{1} \frac{1}{\sqrt{t}} \cdot \frac{dt}{2\sqrt{1-t^2}} = \sqrt{2} \int_{0}^{1} \frac{1}{\sqrt{t(1-t^2)}} dt. \] This integral is known and evaluates to \( \frac{\pi}{2} \). ### Step 7: Final Calculation Thus, we have: \[ \int_{0}^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) dx = \sqrt{2} \cdot \frac{\pi}{2} = \frac{\pi \sqrt{2}}{2}. \] ### Step 8: Equate and Solve for m From the original equation, we compare: \[ \frac{\pi \sqrt{2}}{2} = \frac{\pi}{\sqrt{m}}. \] Cross-multiplying gives: \[ \sqrt{m} = 2\sqrt{2} \implies m = 8. \] ### Conclusion The value of \( m \) is \[ \boxed{8}. \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 85

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 87

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))\ dx

int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

int_(0)^((pi)/(4))sqrt(tan x)dx

int _(0)^(pi//4) [ sqrt(tan x)+ sqrt(cot x)] dx is equal to

int_(0)^(pi//3) [sqrt(3)tanx]dx=

int_(0)^(pi//2)(sqrt(cotx))/((1+sqrt(cotx)))dx=?

int_(0)^(pi//4)sqrt(1+cos2x)dx

int_(0)^(pi//2)(1)/((1+sqrt(cotx)))dx=?

NTA MOCK TESTS-NTA JEE MOCK TEST 86-MATHEMATICS
  1. A line passing through the point (2, 2) encloses an area of 4 sq. unit...

    Text Solution

    |

  2. The angle between the chords of the circle x^2 + y^2 = 100, which pass...

    Text Solution

    |

  3. Let the focus S of the parabola y^(2)=8x lie on the focal chord PQ of ...

    Text Solution

    |

  4. If the tangents PQ and PR are drawn from a variable point P to the ell...

    Text Solution

    |

  5. Let f(x)={{:("max"{|x|","x^(2)},|x|le3),(12-|x|,3lt|x|le12):}. If S is...

    Text Solution

    |

  6. Let a function f:(0,infty)to[0,infty) be defined by f(x)=abs(1-1/x). T...

    Text Solution

    |

  7. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  8. A flagstaff stands vertically on a pillar, the height of the flagstaff...

    Text Solution

    |

  9. The function f(x)=e^(sinx+cosx)AA x in [0, 2pi] attains local extrema ...

    Text Solution

    |

  10. If I=int(dx)/(x^(2)-2x+5)=(1)/(2)tan^(-1)(f(x))+C (where, C is the con...

    Text Solution

    |

  11. If the curve satisfying differential equation xdy=(y+x^(3))dx passes ...

    Text Solution

    |

  12. If the system of equations (.^(n)C(3))x+(.^(n)C(4))y+35z=0, (.^(n)C(4)...

    Text Solution

    |

  13. A box contains 3 coins B(1), B(2),B(3) and the probability of getting ...

    Text Solution

    |

  14. Let A=[(1, 2),(3, 4)] and B=[(p,q),(r,s)] are two matrices such that A...

    Text Solution

    |

  15. If a line passing through (-2, 1, alpha) and (4, 1, 2) is perpendicula...

    Text Solution

    |

  16. If (1^(2)-a(1))+(2^(2)-a(2))+(3^(2)-a(3))+…..+(n^(2)-a(n))=(1)/(3)n(n^...

    Text Solution

    |

  17. If Im((iz+2)/(z+i))=-1 represents part of a circle with radius r units...

    Text Solution

    |

  18. For a sample size of 10 observations x(1), x(2),...... x(10), if Sigma...

    Text Solution

    |

  19. If int(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the valu...

    Text Solution

    |

  20. A line (x-a)/(2)=(y-b)/(3)=(z-c)/(4) intersects a plane x-y+z=4 at a p...

    Text Solution

    |