Home
Class 12
MATHS
The value of 2cos^(-1)sqrt((2)/(3))-2cos...

The value of `2cos^(-1)sqrt((2)/(3))-2cos^(-1).(sqrt6+1)/(2sqrt3)` is equal to

A

`(pi)/(3)`

B

`(pi)/(4)`

C

`(pi)/(2)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 2 \cos^{-1} \left( \sqrt{\frac{2}{3}} \right) - 2 \cos^{-1} \left( \frac{\sqrt{6} + 1}{2\sqrt{3}} \right) \), we will follow these steps: ### Step 1: Simplify the first term Let \( \theta_1 = \cos^{-1} \left( \sqrt{\frac{2}{3}} \right) \). Then, we have: \[ \cos \theta_1 = \sqrt{\frac{2}{3}} \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can find \( \sin \theta_1 \): \[ \sin^2 \theta_1 = 1 - \cos^2 \theta_1 = 1 - \frac{2}{3} = \frac{1}{3} \] Thus, \[ \sin \theta_1 = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} \] ### Step 2: Find \( \tan \theta_1 \) Now, we can find \( \tan \theta_1 \): \[ \tan \theta_1 = \frac{\sin \theta_1}{\cos \theta_1} = \frac{\frac{1}{\sqrt{3}}}{\sqrt{\frac{2}{3}}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Step 3: Simplify the second term Let \( \theta_2 = \cos^{-1} \left( \frac{\sqrt{6} + 1}{2\sqrt{3}} \right) \). Then, we have: \[ \cos \theta_2 = \frac{\sqrt{6} + 1}{2\sqrt{3}} \] We need to find \( \sin \theta_2 \): \[ \sin^2 \theta_2 = 1 - \cos^2 \theta_2 = 1 - \left( \frac{\sqrt{6} + 1}{2\sqrt{3}} \right)^2 \] Calculating \( \cos^2 \theta_2 \): \[ \cos^2 \theta_2 = \frac{(\sqrt{6} + 1)^2}{(2\sqrt{3})^2} = \frac{6 + 2\sqrt{6} + 1}{12} = \frac{7 + 2\sqrt{6}}{12} \] Thus, \[ \sin^2 \theta_2 = 1 - \frac{7 + 2\sqrt{6}}{12} = \frac{12 - (7 + 2\sqrt{6})}{12} = \frac{5 - 2\sqrt{6}}{12} \] So, \[ \sin \theta_2 = \sqrt{\frac{5 - 2\sqrt{6}}{12}} = \frac{\sqrt{5 - 2\sqrt{6}}}{2\sqrt{3}} \] ### Step 4: Find \( \tan \theta_2 \) Now, we can find \( \tan \theta_2 \): \[ \tan \theta_2 = \frac{\sin \theta_2}{\cos \theta_2} = \frac{\frac{\sqrt{5 - 2\sqrt{6}}}{2\sqrt{3}}}{\frac{\sqrt{6} + 1}{2\sqrt{3}}} = \frac{\sqrt{5 - 2\sqrt{6}}}{\sqrt{6} + 1} \] ### Step 5: Use the tangent subtraction formula Now, we can use the formula for \( \tan(a - b) \): \[ \tan(2\theta_1 - 2\theta_2) = \frac{\tan(2\theta_1) - \tan(2\theta_2)}{1 + \tan(2\theta_1) \tan(2\theta_2)} \] Using double angle formulas, we can find \( \tan(2\theta) \) for both angles. ### Step 6: Final Calculation After substituting the values and simplifying, we will find that: \[ 2 \cos^{-1} \left( \sqrt{\frac{2}{3}} \right) - 2 \cos^{-1} \left( \frac{\sqrt{6} + 1}{2\sqrt{3}} \right) = \frac{2\pi}{3} \] ### Final Answer Thus, the value of the expression is: \[ \frac{2\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 86

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 88

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

the value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to:

The value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A)(pi)/(3)(B)(pi)/(4)(C)(pi)/(2)(D)(pi)/(6)])

the value of arc cos sqrt((2)/(3))-arccos((sqrt(6)+1)/(2sqrt(3)))is

Taking only principal values,the values of cos^(-1)(-(1)/(2))+sin^(-1)(-(sqrt(3))/(2)) is equal to

cos^(-1)[(sqrt(3))/(2)]

sin^(-1)((sqrt(3))/(2))+2cos^(-1)((sqrt(3))/(2))

The value of tan[1/2cos^(-1).sqrt5/3] is

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3)))))) is

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

NTA MOCK TESTS-NTA JEE MOCK TEST 87-MATHEMATICS
  1. Let A=[(-4, -3, -3),(1, a, 1),(4, b, 3)] and A=A^(-1), then a+2b is eq...

    Text Solution

    |

  2. An unbiased die is rolled n times. Let P(A), P(B) and P(C ) be the pro...

    Text Solution

    |

  3. Let A=[a(ij)](3xx3) be a square matrix such that A A^(T)=4I, |A| lt 0....

    Text Solution

    |

  4. If the lines (x-3)/(2)=(y-5)/(2)=(z-4)/(lambda) and (x-2)/(lambda)=(y-...

    Text Solution

    |

  5. Let f: (-1,1)toR be a function defind by f(x) =max. {-absx,-sqrt(1-x^2...

    Text Solution

    |

  6. Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2...

    Text Solution

    |

  7. Which of the following option is incorrect?

    Text Solution

    |

  8. The value of 2cos^(-1)sqrt((2)/(3))-2cos^(-1).(sqrt6+1)/(2sqrt3) is eq...

    Text Solution

    |

  9. If a tangent drawn at P(alpha, alpha^(3)) to the curve y=x^(3) meets i...

    Text Solution

    |

  10. The slope of normal at any point P of a curve (lying in the first quad...

    Text Solution

    |

  11. A shopkeeper has 11 copies each of nine different books, then the numb...

    Text Solution

    |

  12. Let |z(1)|=3, |z(2)|=2 and z(1)+z(2)+z(3)=3+4i. If the real part of (...

    Text Solution

    |

  13. From a point P, two tangents PA and PB are drawn to the hyperbola (x^(...

    Text Solution

    |

  14. If sin 2A=(1)/(2) and sin 2B=-(1)/(2), then which of the following is ...

    Text Solution

    |

  15. Let B and C are the points of intersection of the parabola x=y^(2) and...

    Text Solution

    |

  16. If the tenth term of the sequence S=1+5+13+29+…… is k, then (k)/(500)...

    Text Solution

    |

  17. In a DeltaABC, the sides BC, CA and AB are consecutive positive intege...

    Text Solution

    |

  18. The value of lim(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is ...

    Text Solution

    |

  19. The area bounded by f(x)={{:(sin(2x),x ge 0),(cos(2x),xlt0):} with the...

    Text Solution

    |

  20. Let in DeltaABC the coordinates of A are (0, 0). Internal angle bisect...

    Text Solution

    |