Home
Class 12
MATHS
In a DeltaABC, the sides BC, CA and AB a...

In a `DeltaABC`, the sides BC, CA and AB are consecutive positive integers in increasing order. Let `veca, vecb and vecc` are position vectors of the vertices A, B and C respectively. If `(vecc-veca).(vecb-vecc)=0`, then the value of `|veca xx vecb+vecbxx vecc+vecc xxveca|` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Understand the given conditions We have a triangle \( ABC \) with sides \( BC, CA, \) and \( AB \) being consecutive positive integers in increasing order. Let's denote the lengths of the sides as follows: - \( BC = k \) - \( CA = k + 1 \) - \( AB = k + 2 \) ### Step 2: Analyze the dot product condition The condition given is \( (\vec{c} - \vec{a}) \cdot (\vec{b} - \vec{c}) = 0 \). This implies that the vectors \( \vec{c} - \vec{a} \) and \( \vec{b} - \vec{c} \) are perpendicular. Therefore, triangle \( ABC \) is a right triangle with the right angle at vertex \( C \). ### Step 3: Apply the Pythagorean theorem Since \( C \) is the right angle, we can apply the Pythagorean theorem: \[ AB^2 = AC^2 + BC^2 \] Substituting the lengths: \[ (k + 2)^2 = (k + 1)^2 + k^2 \] Expanding each term: \[ k^2 + 4k + 4 = (k^2 + 2k + 1) + k^2 \] Simplifying the right-hand side: \[ k^2 + 4k + 4 = 2k^2 + 2k + 1 \] Rearranging gives: \[ 0 = 2k^2 + 2k + 1 - k^2 - 4k - 4 \] \[ 0 = k^2 - 2k - 3 \] Factoring: \[ 0 = (k - 3)(k + 1) \] Thus, \( k = 3 \) (since \( k \) must be positive). ### Step 4: Determine the lengths of the sides Now substituting \( k = 3 \): - \( BC = 3 \) - \( CA = 4 \) - \( AB = 5 \) ### Step 5: Calculate the area of triangle \( ABC \) The area \( A \) of triangle \( ABC \) can be calculated using the formula for the area of a right triangle: \[ A = \frac{1}{2} \times BC \times CA = \frac{1}{2} \times 3 \times 4 = 6 \] ### Step 6: Calculate the value of \( |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| \) The magnitude of the vector sum of the cross products can be interpreted as six times the area of the triangle: \[ |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| = 2 \times \text{Area of } \triangle ABC \] Thus: \[ |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| = 2 \times 6 = 12 \] ### Final Answer The value of \( |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| \) is \( \boxed{12} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 86

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 88

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

If veca, vecb,vecc are three on-coplanar vectors such that veca xx vecb=vecc,vecb xx vecc=veca,vecc xx veca=vecb , then the value of |veca|+|vecb|+|vecc| is

If veca, vecb, vecc are unit vectors such that veca. Vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

For three vectors veca, vecb and vecc , If |veca|=2, |vecb|=1, vecaxxvecb=vecc and vecbxxvecc=veca , then the value of [(veca+vecb,vecb+vecc,vecc+veca)] is equal to

If veca, vecb are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

NTA MOCK TESTS-NTA JEE MOCK TEST 87-MATHEMATICS
  1. Let A=[(-4, -3, -3),(1, a, 1),(4, b, 3)] and A=A^(-1), then a+2b is eq...

    Text Solution

    |

  2. An unbiased die is rolled n times. Let P(A), P(B) and P(C ) be the pro...

    Text Solution

    |

  3. Let A=[a(ij)](3xx3) be a square matrix such that A A^(T)=4I, |A| lt 0....

    Text Solution

    |

  4. If the lines (x-3)/(2)=(y-5)/(2)=(z-4)/(lambda) and (x-2)/(lambda)=(y-...

    Text Solution

    |

  5. Let f: (-1,1)toR be a function defind by f(x) =max. {-absx,-sqrt(1-x^2...

    Text Solution

    |

  6. Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2...

    Text Solution

    |

  7. Which of the following option is incorrect?

    Text Solution

    |

  8. The value of 2cos^(-1)sqrt((2)/(3))-2cos^(-1).(sqrt6+1)/(2sqrt3) is eq...

    Text Solution

    |

  9. If a tangent drawn at P(alpha, alpha^(3)) to the curve y=x^(3) meets i...

    Text Solution

    |

  10. The slope of normal at any point P of a curve (lying in the first quad...

    Text Solution

    |

  11. A shopkeeper has 11 copies each of nine different books, then the numb...

    Text Solution

    |

  12. Let |z(1)|=3, |z(2)|=2 and z(1)+z(2)+z(3)=3+4i. If the real part of (...

    Text Solution

    |

  13. From a point P, two tangents PA and PB are drawn to the hyperbola (x^(...

    Text Solution

    |

  14. If sin 2A=(1)/(2) and sin 2B=-(1)/(2), then which of the following is ...

    Text Solution

    |

  15. Let B and C are the points of intersection of the parabola x=y^(2) and...

    Text Solution

    |

  16. If the tenth term of the sequence S=1+5+13+29+…… is k, then (k)/(500)...

    Text Solution

    |

  17. In a DeltaABC, the sides BC, CA and AB are consecutive positive intege...

    Text Solution

    |

  18. The value of lim(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is ...

    Text Solution

    |

  19. The area bounded by f(x)={{:(sin(2x),x ge 0),(cos(2x),xlt0):} with the...

    Text Solution

    |

  20. Let in DeltaABC the coordinates of A are (0, 0). Internal angle bisect...

    Text Solution

    |