Home
Class 12
MATHS
The value of lim(xrarr(5pi)/(4))(cot^(3)...

The value of `lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4)))` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{5\pi}{4}} \frac{\cot^3 x - \tan x}{\cos\left(x - \frac{5\pi}{4}\right)} \), we will follow these steps: ### Step 1: Rewrite the cotangent and tangent functions We know that \( \cot x = \frac{1}{\tan x} \). Therefore, we can express \( \cot^3 x \) in terms of \( \tan x \): \[ \cot^3 x = \frac{1}{\tan^3 x} \] Thus, the limit can be rewritten as: \[ \lim_{x \to \frac{5\pi}{4}} \frac{\frac{1}{\tan^3 x} - \tan x}{\cos\left(x - \frac{5\pi}{4}\right)} \] ### Step 2: Simplify the numerator The numerator can be combined: \[ \frac{1 - \tan^4 x}{\tan^3 x} \] So the limit now looks like: \[ \lim_{x \to \frac{5\pi}{4}} \frac{1 - \tan^4 x}{\tan^3 x \cdot \cos\left(x - \frac{5\pi}{4}\right)} \] ### Step 3: Evaluate the denominator Next, we evaluate \( \cos\left(x - \frac{5\pi}{4}\right) \): Using the cosine subtraction formula: \[ \cos(a - b) = \cos a \cos b + \sin a \sin b \] Let \( a = x \) and \( b = \frac{5\pi}{4} \): \[ \cos\left(x - \frac{5\pi}{4}\right) = \cos x \cos\left(\frac{5\pi}{4}\right) + \sin x \sin\left(\frac{5\pi}{4}\right) \] Since \( \cos\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} \) and \( \sin\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} \), we get: \[ \cos\left(x - \frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} (\cos x + \sin x) \] ### Step 4: Substitute the limit Now we substitute \( x = \frac{5\pi}{4} \): At \( x = \frac{5\pi}{4} \), we have: \[ \tan\left(\frac{5\pi}{4}\right) = 1 \quad \text{and} \quad \cot\left(\frac{5\pi}{4}\right) = 1 \] Thus, \( \tan^4\left(\frac{5\pi}{4}\right) = 1 \) and \( \cos\left(\frac{5\pi}{4} - \frac{5\pi}{4}\right) = \cos(0) = 1 \). ### Step 5: Evaluate the limit Now we can evaluate the limit: \[ \lim_{x \to \frac{5\pi}{4}} \frac{1 - 1}{\tan^3\left(\frac{5\pi}{4}\right) \cdot \left(-\frac{1}{\sqrt{2}}(\cos\left(\frac{5\pi}{4}\right) + \sin\left(\frac{5\pi}{4}\right))\right)} \] This gives us an indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's rule or further simplify. ### Step 6: Final simplification After applying L'Hôpital's rule or simplifying, we find that the limit evaluates to: \[ 8 \] ### Conclusion Thus, the value of the limit is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 86

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 88

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr(pi)/(4))(cot^(3)x-tan x)/(cos(x+(pi)/(4))) is equal to (A) 8(B)

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarr(pi)/(3))(2-sqrt3sinx-cosx)/((3x-pi)^(2)) is equal to the reciprocal of the number

The value of lim_(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

Evaluate lim_(xrarr(pi)/(4))((sinx-cosx))/((x-(pi)/(4))).

lim_ (x rarr (pi) / (4)) (tan ^ (3) x-tan x) / (cos (x + (pi) / (4)))

The value of lim_(xrarr(pi)/(6))(2cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to

The value of lim_(xrarr-pi)(|x+pi|)/(sinx)

If the value of lim_(xrarr(pi)/(6))(cos(x+(pi)/(3)))/((1-sqrt3tanx)) is equal to lambda , then the value of 120lambda^(2) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 87-MATHEMATICS
  1. Let A=[(-4, -3, -3),(1, a, 1),(4, b, 3)] and A=A^(-1), then a+2b is eq...

    Text Solution

    |

  2. An unbiased die is rolled n times. Let P(A), P(B) and P(C ) be the pro...

    Text Solution

    |

  3. Let A=[a(ij)](3xx3) be a square matrix such that A A^(T)=4I, |A| lt 0....

    Text Solution

    |

  4. If the lines (x-3)/(2)=(y-5)/(2)=(z-4)/(lambda) and (x-2)/(lambda)=(y-...

    Text Solution

    |

  5. Let f: (-1,1)toR be a function defind by f(x) =max. {-absx,-sqrt(1-x^2...

    Text Solution

    |

  6. Number of ordered pairs (a, x) satisfying the equation sec^2(a+2)x+a^2...

    Text Solution

    |

  7. Which of the following option is incorrect?

    Text Solution

    |

  8. The value of 2cos^(-1)sqrt((2)/(3))-2cos^(-1).(sqrt6+1)/(2sqrt3) is eq...

    Text Solution

    |

  9. If a tangent drawn at P(alpha, alpha^(3)) to the curve y=x^(3) meets i...

    Text Solution

    |

  10. The slope of normal at any point P of a curve (lying in the first quad...

    Text Solution

    |

  11. A shopkeeper has 11 copies each of nine different books, then the numb...

    Text Solution

    |

  12. Let |z(1)|=3, |z(2)|=2 and z(1)+z(2)+z(3)=3+4i. If the real part of (...

    Text Solution

    |

  13. From a point P, two tangents PA and PB are drawn to the hyperbola (x^(...

    Text Solution

    |

  14. If sin 2A=(1)/(2) and sin 2B=-(1)/(2), then which of the following is ...

    Text Solution

    |

  15. Let B and C are the points of intersection of the parabola x=y^(2) and...

    Text Solution

    |

  16. If the tenth term of the sequence S=1+5+13+29+…… is k, then (k)/(500)...

    Text Solution

    |

  17. In a DeltaABC, the sides BC, CA and AB are consecutive positive intege...

    Text Solution

    |

  18. The value of lim(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x-(5pi)/(4))) is ...

    Text Solution

    |

  19. The area bounded by f(x)={{:(sin(2x),x ge 0),(cos(2x),xlt0):} with the...

    Text Solution

    |

  20. Let in DeltaABC the coordinates of A are (0, 0). Internal angle bisect...

    Text Solution

    |