Home
Class 12
MATHS
Consider the matrix A=[(x, 2y,z),(2y,z,x...

Consider the matrix `A=[(x, 2y,z),(2y,z,x),(z,x,2y)]` and `A A^(T)=9I.` If `Tr(A) gt0` and `xyz=(1)/(6)`, then the vlaue of `x^(3)+8y^(3)+z^(3)` is equal to (where, `Tr(A), I and A^(T)` denote the trace of matrix A i.e. the sum of all the principal diagonal elements, the identity matrix of the same order of matrix A and the transpose of matrix A respectively)

A

20

B

22

C

26

D

28

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A \) and the conditions provided. The matrix \( A \) is given as: \[ A = \begin{pmatrix} x & 2y & z \\ 2y & z & x \\ z & x & 2y \end{pmatrix} \] We know that \( AA^T = 9I \), where \( I \) is the identity matrix. The identity matrix \( I \) for a 3x3 matrix is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] ### Step 1: Calculate \( A^T \) The transpose of matrix \( A \) is: \[ A^T = \begin{pmatrix} x & 2y & z \\ 2y & z & x \\ z & x & 2y \end{pmatrix} \] ### Step 2: Calculate \( AA^T \) Now we compute \( AA^T \): \[ AA^T = \begin{pmatrix} x & 2y & z \\ 2y & z & x \\ z & x & 2y \end{pmatrix} \begin{pmatrix} x & 2y & z \\ 2y & z & x \\ z & x & 2y \end{pmatrix} \] Calculating the elements of \( AA^T \): 1. First row, first column: \[ x^2 + 4y^2 + z^2 \] 2. First row, second column: \[ 2yx + 2yz + xz \] 3. First row, third column: \[ zx + 2xy + 2y^2 \] 4. Second row, first column (similar to first row, second column): \[ 2yx + 2yz + xz \] 5. Second row, second column: \[ 4y^2 + z^2 + x^2 \] 6. Second row, third column: \[ 2yz + zx + 2xy \] 7. Third row, first column (similar to first row, third column): \[ zx + 2xy + 2y^2 \] 8. Third row, second column (similar to second row, third column): \[ 2yz + zx + 2xy \] 9. Third row, third column: \[ z^2 + 4y^2 + x^2 \] Thus, we can write: \[ AA^T = \begin{pmatrix} x^2 + 4y^2 + z^2 & 2yx + 2yz + xz & zx + 2xy + 2y^2 \\ 2yx + 2yz + xz & 4y^2 + z^2 + x^2 & 2yz + zx + 2xy \\ zx + 2xy + 2y^2 & 2yz + zx + 2xy & z^2 + 4y^2 + x^2 \end{pmatrix} \] ### Step 3: Set \( AA^T = 9I \) From the equation \( AA^T = 9I \), we have: \[ AA^T = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix} \] This gives us the following equations: 1. \( x^2 + 4y^2 + z^2 = 9 \) 2. \( 2xy + 2yz + xz = 0 \) 3. \( z^2 + 4y^2 + x^2 = 9 \) ### Step 4: Use the Trace Condition The trace of \( A \) is given by: \[ \text{Tr}(A) = x + z + 2y > 0 \] ### Step 5: Use the Product Condition We are also given that \( xyz = \frac{1}{6} \). ### Step 6: Find \( x^3 + 8y^3 + z^3 \) Using the identity: \[ x^3 + 8y^3 + z^3 - 3xyz = (x + 2y + z)(x^2 + 4y^2 + z^2 - xz - 2xy - 2yz) \] From our previous calculations, we know: - \( x + 2y + z = 3 \) - \( x^2 + 4y^2 + z^2 = 9 \) - \( xz + 2xy + 2yz = 0 \) Substituting these into the identity gives: \[ x^3 + 8y^3 + z^3 - 3xyz = 3(9 - 0) = 27 \] Thus, we have: \[ x^3 + 8y^3 + z^3 = 27 + 3xyz \] Substituting \( xyz = \frac{1}{6} \): \[ x^3 + 8y^3 + z^3 = 27 + 3 \cdot \frac{1}{6} = 27 + \frac{1}{2} = 27.5 \] ### Final Answer Thus, the value of \( x^3 + 8y^3 + z^3 \) is: \[ \boxed{28} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 87

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 89

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If A=[(2, 1,-1),(3, 5,2),(1, 6, 1)] , then tr(Aadj(adjA)) is equal to (where, tr (P) denotes the trace of the matrix P i.e. the sum of all the diagonal elements of the matrix P and adj(P) denotes the adjoint of matrix P)

Let Z=[(1,1,3),(5,1,2),(3,1,0)] and P=[(1,0,2),(2,1,0),(3,0,1)] . If Z=PQ^(-1) , where Q is a square matrix of order 3, then the value of Tr((adjQ)P) is equal to (where Tr(A) represents the trace of a matrix A i.e. the sum of all the diagonal elements of the matrix A and adjB represents the adjoint matrix of matrix B)

If A=[(x,y,z),(y,z,x),(z,x,y)] and A^3=I_3 and xyz=2 and x+y+z gt 0 find the value of x^3+y^3+z^3 is

Let A+2B=[{:(2,4,0),(6,-3,3),(-5,3,5):}] and 2A-B=[{:(6,-2,4),(6,1,5),(6,3,4):}] , then tr (A) - tr (B) is equal to (where , tr (A) =n trace of matrix x A i.e. . Sum of the principle diagonal elements of matrix A)

consider a matrix A=1/3[[x,2,2],[2,1,-2],[-2,y,-1]] if A A^T=I_3 then

If matrix A=[(0, 2,y),( z, x, y),(-z, x-y, z)] satisfies A^T=A^(-1) , find x , y , zdot

If A is matrix of order 3 such that |A|=5 and B= adj A, then the value of ||A^(-1)|(AB)^(T)| is equal to (where |A| denotes determinant of matrix A. A^(T) denotes transpose of matrix A, A^(-1) denotes inverse of matrix A. adj A denotes adjoint of matrix A)

Let matrix A=[{:(x,y,-z),(1,2,3),(1,1,2):}] , where x,y,z in N . If |adj(adj(adj(adjA)))|=4^(8)*5^(16) , then the number of such (x,y,z) are

The matrix product satisfies [5, 6, 2].A^(T)=[4, 8, 1, 7, 8] , where A^(T) denotes the transpose of the matrix A. Then the order of the matrix A equal to

Let matrix A=[(x,y,-z),(1,2,3),(1,1,2)] where x,y, z in N . If det. (adj. (adj. A)) =2^(8)*3^(4) then the number of such matrices A is : [Note : adj. A denotes adjoint of square matrix A.]

NTA MOCK TESTS-NTA JEE MOCK TEST 88-MATHEMATICS
  1. Let there are 4 sections of 25 students each in a coaching class. Now,...

    Text Solution

    |

  2. If the equation of the plane passing through (1,2, 3) and situated at ...

    Text Solution

    |

  3. Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If...

    Text Solution

    |

  4. If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +..... + a50.x^50 then a0 + a2 + ...

    Text Solution

    |

  5. A student has to answer 10 out of 13 questions in an examination. T...

    Text Solution

    |

  6. If tantheta=3tanphi, then the maximum value of tan^2(theta-phi) is

    Text Solution

    |

  7. Consider a relation R defined as aRb if 2+ab gt0 where a, b are real n...

    Text Solution

    |

  8. The length of the longest interval in which the function f(x)=x^(3)-3a...

    Text Solution

    |

  9. The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c...

    Text Solution

    |

  10. The mean and variance of 7 observations are 7 and 22 respectively. If ...

    Text Solution

    |

  11. The maximum area (in sq. units) bounded by y=sinx, y=ax(AA a in [1, 4]...

    Text Solution

    |

  12. If z(1), z(2), z(3) are 3 distinct complex such that (3)/(|z(1)-z(2)|)...

    Text Solution

    |

  13. The line 2x+y=3 cuts the ellipse 4x^(2)+y^(2)=5 at points P and Q. If ...

    Text Solution

    |

  14. Let veca=x^(2)hati-3hatj+(x-3)hatk and vecb=hati+3hatj-(x-3)hatk be tw...

    Text Solution

    |

  15. Let D is a point on the line l(1):x+y-2=0, S(3, 3) is a fixed point an...

    Text Solution

    |

  16. The value of lim(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is e...

    Text Solution

    |

  17. Let A be a non - singular matrix of order 3 such that Aadj (3A)=5A A^(...

    Text Solution

    |

  18. If f(n+1)=(2f(n)+1)/(2) for n=1, 2, 3……….. and f(1)=2, then (f(101))/(...

    Text Solution

    |

  19. If the integral I=int(0)^(19pi)(dx)/(1+e^(cos^(3)x) has the value, (kp...

    Text Solution

    |

  20. The line L(1)-=3x-4y+1=0 touches the circles C(1) and C(2). Centers of...

    Text Solution

    |