Home
Class 12
MATHS
Let veca=x^(2)hati-3hatj+(x-3)hatk and v...

Let `veca=x^(2)hati-3hatj+(x-3)hatk` and `vecb=hati+3hatj-(x-3)hatk` be two vectors such that `|veca|=|vecb|`. If angle between `4veca+7vecb and 7veca-4vecb` is equal to `theta`. Then `cos 2 theta` is equal to

A

`-(1)/(2)`

B

`(sqrt3)/(2)`

C

`-1`

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: ### Step 1: Find the Magnitudes of Vectors \( \vec{a} \) and \( \vec{b} \) Given: \[ \vec{a} = x^2 \hat{i} - 3 \hat{j} + (x - 3) \hat{k} \] \[ \vec{b} = \hat{i} + 3 \hat{j} - (x - 3) \hat{k} \] The magnitudes of the vectors are given by: \[ |\vec{a}| = \sqrt{(x^2)^2 + (-3)^2 + (x - 3)^2} \] \[ |\vec{b}| = \sqrt{(1)^2 + (3)^2 + (-(x - 3))^2} \] Calculating \( |\vec{a}| \): \[ |\vec{a}| = \sqrt{x^4 + 9 + (x - 3)^2} \] \[ = \sqrt{x^4 + 9 + (x^2 - 6x + 9)} = \sqrt{x^4 + x^2 - 6x + 18} \] Calculating \( |\vec{b}| \): \[ |\vec{b}| = \sqrt{1 + 9 + (x - 3)^2} \] \[ = \sqrt{10 + (x^2 - 6x + 9)} = \sqrt{x^2 - 6x + 19} \] ### Step 2: Set the Magnitudes Equal Since \( |\vec{a}| = |\vec{b}| \): \[ \sqrt{x^4 + x^2 - 6x + 18} = \sqrt{x^2 - 6x + 19} \] Squaring both sides: \[ x^4 + x^2 - 6x + 18 = x^2 - 6x + 19 \] ### Step 3: Simplify the Equation Rearranging gives: \[ x^4 + x^2 - 6x + 18 - x^2 + 6x - 19 = 0 \] \[ x^4 - 1 = 0 \] Factoring: \[ (x^2 - 1)(x^2 + 1) = 0 \] Thus, \( x^2 - 1 = 0 \) gives \( x = 1 \) or \( x = -1 \). ### Step 4: Find the Angle Between \( 4\vec{a} + 7\vec{b} \) and \( 7\vec{a} - 4\vec{b} \) Let: \[ \vec{u} = 4\vec{a} + 7\vec{b} \] \[ \vec{v} = 7\vec{a} - 4\vec{b} \] The cosine of the angle \( \theta \) between \( \vec{u} \) and \( \vec{v} \) is given by: \[ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} \] ### Step 5: Calculate \( \vec{u} \cdot \vec{v} \) Calculating \( \vec{u} \cdot \vec{v} \): \[ \vec{u} \cdot \vec{v} = (4\vec{a} + 7\vec{b}) \cdot (7\vec{a} - 4\vec{b}) \] \[ = 28 \vec{a} \cdot \vec{a} - 16 \vec{a} \cdot \vec{b} + 49 \vec{b} \cdot \vec{b} \] Using \( |\vec{a}| = |\vec{b}| \): Let \( |\vec{a}| = |\vec{b}| = k \), then: \[ \vec{u} \cdot \vec{v} = 28k^2 - 16 \vec{a} \cdot \vec{b} + 49k^2 \] \[ = (28 + 49)k^2 - 16 \vec{a} \cdot \vec{b} = 77k^2 - 16 \vec{a} \cdot \vec{b} \] ### Step 6: Find \( |\vec{u}| \) and \( |\vec{v}| \) The magnitudes can be calculated similarly, but since we are interested in the angle, we can use the fact that if \( \vec{u} \) and \( \vec{v} \) are orthogonal, \( \cos \theta = 0 \). ### Step 7: Calculate \( \cos 2\theta \) If \( \theta = 90^\circ \), then: \[ \cos 2\theta = \cos 180^\circ = -1 \] ### Final Answer Thus, the value of \( \cos 2\theta \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 87

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 89

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of veca on vecb

Let veca=hati+3hatj+7hatk and vecb=7hati-hatj+8hatk find the projection of vecb on veca

If veca = 2hati -3hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

vecA=4hati+4hatj-4hatk and vecB=3hati+hatj+4hatk , then angle between vectors vecA and vecB is

If veca=hati+hatj+hatk and vecb = hati-2hatj+hatk then find vector vecc such that veca.veca = 2 and veca xx vecc = vecb

Let veca =2hati +hatj -2hatk and vecb = hati +hatj . " Let " vecc be vector such that |vecc -veca|=3, |(veca xx vecb) xx vecc|=3 and the angle between vecc and veca xx vecb " be " 30^(@) Then , veca . Vecc is equal to

If a=4hati+2hatj-hatk and vecb=5hati+2hatj-3hatk find the angle between the vectors veca+vecb and veca-vecb

If veca=5hati-hatj+3hatk and vecb=hati+3hatj-5hatk then show that the vectors veca+vecb and veca-vecb are perpendicular.

If veca=hatj-hatk and vecc=hati+hatj+hatk are given vectors, and vecb is such that veca.vecb=3 and vecaxxvecb+vecc=0 than |vecb|^(2) is equal to ………………

NTA MOCK TESTS-NTA JEE MOCK TEST 88-MATHEMATICS
  1. Let there are 4 sections of 25 students each in a coaching class. Now,...

    Text Solution

    |

  2. If the equation of the plane passing through (1,2, 3) and situated at ...

    Text Solution

    |

  3. Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If...

    Text Solution

    |

  4. If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +..... + a50.x^50 then a0 + a2 + ...

    Text Solution

    |

  5. A student has to answer 10 out of 13 questions in an examination. T...

    Text Solution

    |

  6. If tantheta=3tanphi, then the maximum value of tan^2(theta-phi) is

    Text Solution

    |

  7. Consider a relation R defined as aRb if 2+ab gt0 where a, b are real n...

    Text Solution

    |

  8. The length of the longest interval in which the function f(x)=x^(3)-3a...

    Text Solution

    |

  9. The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c...

    Text Solution

    |

  10. The mean and variance of 7 observations are 7 and 22 respectively. If ...

    Text Solution

    |

  11. The maximum area (in sq. units) bounded by y=sinx, y=ax(AA a in [1, 4]...

    Text Solution

    |

  12. If z(1), z(2), z(3) are 3 distinct complex such that (3)/(|z(1)-z(2)|)...

    Text Solution

    |

  13. The line 2x+y=3 cuts the ellipse 4x^(2)+y^(2)=5 at points P and Q. If ...

    Text Solution

    |

  14. Let veca=x^(2)hati-3hatj+(x-3)hatk and vecb=hati+3hatj-(x-3)hatk be tw...

    Text Solution

    |

  15. Let D is a point on the line l(1):x+y-2=0, S(3, 3) is a fixed point an...

    Text Solution

    |

  16. The value of lim(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is e...

    Text Solution

    |

  17. Let A be a non - singular matrix of order 3 such that Aadj (3A)=5A A^(...

    Text Solution

    |

  18. If f(n+1)=(2f(n)+1)/(2) for n=1, 2, 3……….. and f(1)=2, then (f(101))/(...

    Text Solution

    |

  19. If the integral I=int(0)^(19pi)(dx)/(1+e^(cos^(3)x) has the value, (kp...

    Text Solution

    |

  20. The line L(1)-=3x-4y+1=0 touches the circles C(1) and C(2). Centers of...

    Text Solution

    |