Home
Class 12
MATHS
If f(n+1)=(2f(n)+1)/(2) for n=1, 2, 3………...

If `f(n+1)=(2f(n)+1)/(2)` for `n=1, 2, 3………..` and `f(1)=2`, then `(f(101))/(10)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{f(101)}{10} \) given the recurrence relation \( f(n+1) = \frac{2f(n) + 1}{2} \) and the initial condition \( f(1) = 2 \). ### Step-by-Step Solution: 1. **Identify the recurrence relation**: The recurrence relation is given as: \[ f(n+1) = \frac{2f(n) + 1}{2} \] with the initial condition \( f(1) = 2 \). 2. **Calculate subsequent values of \( f(n) \)**: We will calculate the values of \( f(n) \) for \( n = 1, 2, 3, \ldots, 101 \). - For \( n = 1 \): \[ f(2) = \frac{2f(1) + 1}{2} = \frac{2 \cdot 2 + 1}{2} = \frac{4 + 1}{2} = \frac{5}{2} \] - For \( n = 2 \): \[ f(3) = \frac{2f(2) + 1}{2} = \frac{2 \cdot \frac{5}{2} + 1}{2} = \frac{5 + 1}{2} = \frac{6}{2} = 3 \] - For \( n = 3 \): \[ f(4) = \frac{2f(3) + 1}{2} = \frac{2 \cdot 3 + 1}{2} = \frac{6 + 1}{2} = \frac{7}{2} \] - For \( n = 4 \): \[ f(5) = \frac{2f(4) + 1}{2} = \frac{2 \cdot \frac{7}{2} + 1}{2} = \frac{7 + 1}{2} = \frac{8}{2} = 4 \] - For \( n = 5 \): \[ f(6) = \frac{2f(5) + 1}{2} = \frac{2 \cdot 4 + 1}{2} = \frac{8 + 1}{2} = \frac{9}{2} \] Continuing this process, we can see a pattern forming. 3. **Recognize the pattern**: The values of \( f(n) \) appear to be alternating between integers and half-integers. Specifically, we can observe: - \( f(1) = 2 \) - \( f(2) = \frac{5}{2} \) - \( f(3) = 3 \) - \( f(4) = \frac{7}{2} \) - \( f(5) = 4 \) - \( f(6) = \frac{9}{2} \) - \( f(7) = 5 \) - \( f(8) = \frac{11}{2} \) - \( f(9) = 6 \) - \( f(10) = \frac{13}{2} \) - Continuing this, we can see that \( f(n) \) can be expressed as: - For odd \( n \): \( f(n) = \frac{n + 3}{2} \) - For even \( n \): \( f(n) = \frac{n + 2}{2} \) 4. **Calculate \( f(101) \)**: Since \( 101 \) is odd: \[ f(101) = \frac{101 + 3}{2} = \frac{104}{2} = 52 \] 5. **Calculate \( \frac{f(101)}{10} \)**: \[ \frac{f(101)}{10} = \frac{52}{10} = 5.2 \] ### Final Answer: \[ \frac{f(101)}{10} = 5.2 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 87

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 89

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Suppose that F(n+1)=(2f(n)+1)/(2) for n=1,2,3,...... and f(1)=2 Then F(101) equals =?

If f(n+1)=(2F(n)+1)/(2),n=1,2,3,... and F(1)=2. Then F(101) equals 52(b)49(c) 48(d) 51

If f(x) = log ((m(x))/(n(x))), m(1) = n(1) = 1 and m'(1) = n'(1) = 2, " then" f'(1) is equal to

Suppose that F(n + 1) = (A) 50 for n = 1, 2, 3, and F(1)-2. Then F(101) equals (B) 52 (C) 54 (D) none of these a2 be in A.P, andg a,o = g10-3, then

If f(x) =1 + nx+ (n(n-1))/(2) x^(2) + (n(n-1)(n-2))/(6) x^(3) + ...+ n^(x) , "then" f''(1) is equal to

Consider the function f defined on the set of all non-negative interger such that f(0) = 1, f(1) =0 and f(n) + f(n-1) = nf(n-1)+(n-1) f(n-2) for n ge 2 , then f(5) is equal to

If f(x) = a(x^n +3), f(1) = 12, f(3) = 36 , then f(2) is equal to

If f(n+2)=(1)/(2){f(n+1)+(9)/(f(n))}, n in N and f(n) gt0 for all n in N , then lim_( n to oo)f(n) is equal to

If f:(1, oo) to (2,oo) is given by f(n) = n+1 , then f^-1 (n) equals to?

NTA MOCK TESTS-NTA JEE MOCK TEST 88-MATHEMATICS
  1. Let there are 4 sections of 25 students each in a coaching class. Now,...

    Text Solution

    |

  2. If the equation of the plane passing through (1,2, 3) and situated at ...

    Text Solution

    |

  3. Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If...

    Text Solution

    |

  4. If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +..... + a50.x^50 then a0 + a2 + ...

    Text Solution

    |

  5. A student has to answer 10 out of 13 questions in an examination. T...

    Text Solution

    |

  6. If tantheta=3tanphi, then the maximum value of tan^2(theta-phi) is

    Text Solution

    |

  7. Consider a relation R defined as aRb if 2+ab gt0 where a, b are real n...

    Text Solution

    |

  8. The length of the longest interval in which the function f(x)=x^(3)-3a...

    Text Solution

    |

  9. The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c...

    Text Solution

    |

  10. The mean and variance of 7 observations are 7 and 22 respectively. If ...

    Text Solution

    |

  11. The maximum area (in sq. units) bounded by y=sinx, y=ax(AA a in [1, 4]...

    Text Solution

    |

  12. If z(1), z(2), z(3) are 3 distinct complex such that (3)/(|z(1)-z(2)|)...

    Text Solution

    |

  13. The line 2x+y=3 cuts the ellipse 4x^(2)+y^(2)=5 at points P and Q. If ...

    Text Solution

    |

  14. Let veca=x^(2)hati-3hatj+(x-3)hatk and vecb=hati+3hatj-(x-3)hatk be tw...

    Text Solution

    |

  15. Let D is a point on the line l(1):x+y-2=0, S(3, 3) is a fixed point an...

    Text Solution

    |

  16. The value of lim(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is e...

    Text Solution

    |

  17. Let A be a non - singular matrix of order 3 such that Aadj (3A)=5A A^(...

    Text Solution

    |

  18. If f(n+1)=(2f(n)+1)/(2) for n=1, 2, 3……….. and f(1)=2, then (f(101))/(...

    Text Solution

    |

  19. If the integral I=int(0)^(19pi)(dx)/(1+e^(cos^(3)x) has the value, (kp...

    Text Solution

    |

  20. The line L(1)-=3x-4y+1=0 touches the circles C(1) and C(2). Centers of...

    Text Solution

    |