Home
Class 12
MATHS
If the integral I=int(0)^(19pi)(dx)/(1+e...

If the integral `I=int_(0)^(19pi)(dx)/(1+e^(cos^(3)x)` has the value, `(kpi)/(2),` then `(k)/(2)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{19\pi} \frac{dx}{1 + e^{\cos^3 x}} \) and find the value of \( k \) such that \( I = \frac{k\pi}{2} \), we can follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{19\pi} \frac{dx}{1 + e^{\cos^3 x}} \] ### Step 2: Use the property of definite integrals We can use the property of definite integrals which states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we will let \( a = 19\pi \): \[ I = \int_{0}^{19\pi} \frac{dx}{1 + e^{\cos^3(19\pi - x)}} \] ### Step 3: Simplify the cosine term Using the identity \( \cos(19\pi - x) = -\cos(x) \): \[ \cos^3(19\pi - x) = (-\cos x)^3 = -\cos^3 x \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{19\pi} \frac{dx}{1 + e^{-\cos^3 x}} \] ### Step 4: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{19\pi} \frac{dx}{1 + e^{\cos^3 x}} \) 2. \( I = \int_{0}^{19\pi} \frac{dx}{1 + e^{-\cos^3 x}} \) Adding these two equations gives: \[ 2I = \int_{0}^{19\pi} \left( \frac{1}{1 + e^{\cos^3 x}} + \frac{1}{1 + e^{-\cos^3 x}} \right) dx \] ### Step 5: Simplify the combined integral The expression inside the integral simplifies as follows: \[ \frac{1}{1 + e^{\cos^3 x}} + \frac{1}{1 + e^{-\cos^3 x}} = \frac{(1 + e^{-\cos^3 x}) + (1 + e^{\cos^3 x})}{(1 + e^{\cos^3 x})(1 + e^{-\cos^3 x})} \] This simplifies to: \[ \frac{2}{1 + e^{\cos^3 x} + e^{-\cos^3 x}} = \frac{2}{1 + 2\cosh(\cos^3 x)} \] ### Step 6: Evaluate the integral Thus, we have: \[ 2I = \int_{0}^{19\pi} \frac{2}{1 + 2\cosh(\cos^3 x)} \, dx \] This integral can be evaluated over the limits \( 0 \) to \( 19\pi \). The integral evaluates to: \[ 2I = 19\pi \] Therefore: \[ I = \frac{19\pi}{2} \] ### Step 7: Find \( k \) From the problem statement, we have: \[ I = \frac{k\pi}{2} \] Setting these equal gives: \[ \frac{19\pi}{2} = \frac{k\pi}{2} \] Thus, we find: \[ k = 19 \] ### Step 8: Calculate \( \frac{k}{2} \) Finally, we need to find \( \frac{k}{2} \): \[ \frac{k}{2} = \frac{19}{2} = 9.5 \] ### Final Answer Thus, the value of \( \frac{k}{2} \) is: \[ \boxed{9.5} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 87

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 89

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The integral int_(0)^(pi/2)(dx)/(1+cos x) is equal to

The value of the integral I=int_(0)^(100pi)(dx)/(1+e^(sinx)) is equal to

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the integral int_(0)^(pi) (1)/(e^(cosx)+1)dx , is

The value fo the integral I=int_(0)^(oo)(dx)/((1+x^(2020))(1+x^(2))) is equal to kpi , then the value of 16k is equal to

The value of the integral int_(0)^(pi) (x sin x)/(1+cos^(2)x)dx , is

The value of the definite integral int_(0)^( pi)((1-x sin2x)e^(cos^(2)x)+(1+x sin2x)e^(sin^(2)x)) dx is equal to

If the value of the integral int_(0)^(1//2) (x^(2))/((1-x^(2))^(3//2)) dx is (k)/(6) then k is equal to :

The value of the integral int_(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1) , is

NTA MOCK TESTS-NTA JEE MOCK TEST 88-MATHEMATICS
  1. Let there are 4 sections of 25 students each in a coaching class. Now,...

    Text Solution

    |

  2. If the equation of the plane passing through (1,2, 3) and situated at ...

    Text Solution

    |

  3. Consider the matrix A=[(x, 2y,z),(2y,z,x),(z,x,2y)] and A A^(T)=9I. If...

    Text Solution

    |

  4. If (1 +x+x^2)^25 = a0 + a1x+ a2x^2 +..... + a50.x^50 then a0 + a2 + ...

    Text Solution

    |

  5. A student has to answer 10 out of 13 questions in an examination. T...

    Text Solution

    |

  6. If tantheta=3tanphi, then the maximum value of tan^2(theta-phi) is

    Text Solution

    |

  7. Consider a relation R defined as aRb if 2+ab gt0 where a, b are real n...

    Text Solution

    |

  8. The length of the longest interval in which the function f(x)=x^(3)-3a...

    Text Solution

    |

  9. The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c...

    Text Solution

    |

  10. The mean and variance of 7 observations are 7 and 22 respectively. If ...

    Text Solution

    |

  11. The maximum area (in sq. units) bounded by y=sinx, y=ax(AA a in [1, 4]...

    Text Solution

    |

  12. If z(1), z(2), z(3) are 3 distinct complex such that (3)/(|z(1)-z(2)|)...

    Text Solution

    |

  13. The line 2x+y=3 cuts the ellipse 4x^(2)+y^(2)=5 at points P and Q. If ...

    Text Solution

    |

  14. Let veca=x^(2)hati-3hatj+(x-3)hatk and vecb=hati+3hatj-(x-3)hatk be tw...

    Text Solution

    |

  15. Let D is a point on the line l(1):x+y-2=0, S(3, 3) is a fixed point an...

    Text Solution

    |

  16. The value of lim(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is e...

    Text Solution

    |

  17. Let A be a non - singular matrix of order 3 such that Aadj (3A)=5A A^(...

    Text Solution

    |

  18. If f(n+1)=(2f(n)+1)/(2) for n=1, 2, 3……….. and f(1)=2, then (f(101))/(...

    Text Solution

    |

  19. If the integral I=int(0)^(19pi)(dx)/(1+e^(cos^(3)x) has the value, (kp...

    Text Solution

    |

  20. The line L(1)-=3x-4y+1=0 touches the circles C(1) and C(2). Centers of...

    Text Solution

    |