Home
Class 12
MATHS
Let f(x)={((1+cosx)/((pi-x)^(2)).(sin^(2...

Let `f(x)={((1+cosx)/((pi-x)^(2)).(sin^(2)x)/(ln(1+pi^(2)-2pix+x^(2))),x ne pi),(lambda, x=pi):}`

A

1

B

`-1`

C

`(1)/(2)`

D

`(1)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) such that the function \( f(x) \) is continuous at \( x = \pi \), we need to evaluate the limit of \( f(x) \) as \( x \) approaches \( \pi \) and set it equal to \( f(\pi) = \lambda \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \begin{cases} \frac{(1 + \cos x)}{(\pi - x)^2} \cdot \frac{\sin^2 x}{\ln(1 + \pi^2 - 2\pi x + x^2)}, & x \neq \pi \\ \lambda, & x = \pi \end{cases} \] 2. **Set up the limit**: We need to find: \[ \lim_{x \to \pi} f(x) = \lambda \] 3. **Substitute \( x = \pi + t \)**: As \( x \to \pi \), let \( t = x - \pi \) so that \( x = \pi + t \). Then as \( x \to \pi \), \( t \to 0 \). 4. **Rewrite the limit**: Substitute \( x = \pi + t \): \[ \lim_{t \to 0} f(\pi + t) = \lim_{t \to 0} \frac{(1 + \cos(\pi + t))}{(\pi - (\pi + t))^2} \cdot \frac{\sin^2(\pi + t)}{\ln(1 + \pi^2 - 2\pi(\pi + t) + (\pi + t)^2)} \] Simplifying the terms: - \( \cos(\pi + t) = -\cos t \) - \( \sin(\pi + t) = -\sin t \) Thus, the limit becomes: \[ \lim_{t \to 0} \frac{(1 - \cos t)}{t^2} \cdot \frac{\sin^2 t}{\ln(1 + \pi^2 - 2\pi^2 - 2\pi t + \pi^2 + 2\pi t + t^2)} = \lim_{t \to 0} \frac{(1 - \cos t)}{t^2} \cdot \frac{\sin^2 t}{\ln(1 + t^2)} \] 5. **Evaluate the limit**: We know: - \( 1 - \cos t \sim \frac{t^2}{2} \) as \( t \to 0 \) - \( \sin^2 t \sim t^2 \) as \( t \to 0 \) - \( \ln(1 + t^2) \sim t^2 \) as \( t \to 0 \) Therefore, we can rewrite the limit: \[ \lim_{t \to 0} \frac{\frac{t^2}{2}}{t^2} \cdot \frac{t^2}{t^2} = \lim_{t \to 0} \frac{1}{2} \cdot 1 = \frac{1}{2} \] 6. **Set the limit equal to \( \lambda \)**: Since \( \lim_{x \to \pi} f(x) = \lambda \), we have: \[ \lambda = \frac{1}{2} \] ### Final Answer: Thus, the value of \( \lambda \) is: \[ \lambda = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 89

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 91

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:((1-cosx)/((2pi-x)^(2)).(tan^(2)x)/(ln(1+4pi^(2)-4pix+x^(2))),":",xne2pi),(lambda,":",x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

Let f(x)={{:(((1-cosx)/((2pi-x)^(2)))((sin^(2)x)/(log(1+4pi^(2)-4pix+x^(2)))),:,xne2pi),(" "lambda,:,x=2pi):} is continuous at x=2pi , then the value of lambda is equal to

Let f(x)=(1-sin x)/((pi-2x)^(2))*(ln(sin x))/(ln(1+pi^(2)-4 pi x+4x^(2))),x!=(pi)/(2). The value of f((pi)/(2)) so that the function is continuous at x=(pi)/(2) is:

int_(pi/2)^(pi/2)((x^2cosx)/(1+pi^x)+(sin^2x+1)/(e^(sin^(2025)x)+1))dx

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

NTA MOCK TESTS-NTA JEE MOCK TEST 90-MATHEMATICS
  1. Consider three statements p : Aman will come today q : Aditi will...

    Text Solution

    |

  2. Let f(x)={((1+cosx)/((pi-x)^(2)).(sin^(2)x)/(ln(1+pi^(2)-2pix+x^(2))),...

    Text Solution

    |

  3. The set (Auu BuuC)nn(AnnB'nnB')'nnC is equal to

    Text Solution

    |

  4. Consider the following two statements P and Q. P: cos^(-1)(cos.(4pi)...

    Text Solution

    |

  5. Let veca and vecb be two orthogonal unit vectors and vecc is a vector ...

    Text Solution

    |

  6. The angle between the tangents drawn from the point (4, 1) to the para...

    Text Solution

    |

  7. Let A and B be two symmetric matrices. prove that AB=BA if and only if...

    Text Solution

    |

  8. A biased coin is tossed repeatedly until a tail appears for the first ...

    Text Solution

    |

  9. The remainder obtained when 51^25 is divided by 13 is

    Text Solution

    |

  10. 5/(1^2*4^2)+11/(4^2*7^2)+17/(7^2*1 0^2)+

    Text Solution

    |

  11. If the area bounded by the curves {(x, y)|x^(2)-y+1 ge 0} and {(x, y)|...

    Text Solution

    |

  12. Find the number of ordered pairs of (x, y) satisfying the equation y =...

    Text Solution

    |

  13. Let P-=(a, 0), Q-=(-1, 0) and R-=(2, 0) are three given points. If the...

    Text Solution

    |

  14. The equation of the plane which passes through the point of intersecti...

    Text Solution

    |

  15. If the common tangets of x^(2)+y^(2)=r^(2) and (x^(2))/(16)+(y^(2))/(9...

    Text Solution

    |

  16. If z(i) (where i=1, 2,………………..6) be the roots of the equation z^(6)+z^...

    Text Solution

    |

  17. The cosine of the acute angle between the curves y=|x^(2)-1| and y=|x^...

    Text Solution

    |

  18. The integral I=int((1)/(x.secx)-ln(x^(sinx)))dx simplifies to (where, ...

    Text Solution

    |

  19. If 0 < alpha < pi/3, then alpha(secalpha) is

    Text Solution

    |

  20. If the curve satisfies the differential equation x.(dy)/(dx)=x^(2)+y-2...

    Text Solution

    |