Home
Class 12
MATHS
Let P-=(a, 0), Q-=(-1, 0) and R-=(2, 0) ...

Let `P-=(a, 0), Q-=(-1, 0) and R-=(2, 0)` are three given points. If the locus of the point S satisfying the reaction `SQ^(2)+SR^(2)=2SP^(2)` is `2x+3=0`. Then the sum of all possible values of a is

A

1

B

`-4`

C

3

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a \) such that the locus of point \( S \) satisfies the equation \( SQ^2 + SR^2 = 2SP^2 \) and is given by the line \( 2x + 3 = 0 \). ### Step-by-step Solution: 1. **Identify the Points**: - Let \( P = (a, 0) \) - \( Q = (-1, 0) \) - \( R = (2, 0) \) 2. **Assume Coordinates of Point \( S \)**: - Let \( S = (h, k) \) 3. **Write the Distance Formulas**: - The distances are: - \( SQ^2 = (h + 1)^2 + k^2 \) - \( SR^2 = (h - 2)^2 + k^2 \) - \( SP^2 = (h - a)^2 + k^2 \) 4. **Set Up the Equation**: - According to the problem, we have: \[ SQ^2 + SR^2 = 2SP^2 \] - Substituting the distances: \[ (h + 1)^2 + k^2 + (h - 2)^2 + k^2 = 2((h - a)^2 + k^2) \] 5. **Simplify the Equation**: - Combine the left-hand side: \[ (h + 1)^2 + (h - 2)^2 + 2k^2 = 2((h - a)^2 + k^2) \] - Expanding both sides: \[ (h^2 + 2h + 1) + (h^2 - 4h + 4) + 2k^2 = 2(h^2 - 2ah + a^2 + k^2) \] - Combine like terms: \[ 2h^2 - 2h + 5 + 2k^2 = 2h^2 - 4ah + 2a^2 + 2k^2 \] 6. **Eliminate Common Terms**: - Cancel \( 2h^2 \) and \( 2k^2 \) from both sides: \[ -2h + 5 = -4ah + 2a^2 \] 7. **Rearranging the Equation**: - Rearranging gives: \[ 4ah - 2h + 2a^2 - 5 = 0 \] - Factor out \( h \): \[ h(4a - 2) + (2a^2 - 5) = 0 \] 8. **Finding the Locus**: - For the locus to be valid for all \( h \), the coefficient of \( h \) must be zero: \[ 4a - 2 = 0 \implies a = \frac{1}{2} \] - Substitute \( a = \frac{1}{2} \) into \( 2a^2 - 5 = 0 \): \[ 2\left(\frac{1}{2}\right)^2 - 5 = 0 \implies \frac{1}{2} - 5 = 0 \implies -\frac{9}{2} \neq 0 \] - Thus, we need to find when \( 2a^2 - 5 = 0 \): \[ 2a^2 = 5 \implies a^2 = \frac{5}{2} \implies a = \pm \sqrt{\frac{5}{2}} \] 9. **Sum of All Possible Values of \( a \)**: - The possible values of \( a \) are \( \sqrt{\frac{5}{2}} \) and \( -\sqrt{\frac{5}{2}} \). - Therefore, the sum of all possible values of \( a \) is: \[ \sqrt{\frac{5}{2}} + (-\sqrt{\frac{5}{2}}) = 0 \] ### Final Answer: The sum of all possible values of \( a \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 89

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 91

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If P(1,0),Q(-1,0) and R(2,0) are three given points,then the locus of the point S satisfying the relation (SQ)^(2)+(SR)^(2)=2(SP)^(2)

If P=(1,0);Q=(-1.0)&R=(2,0) are three given points,then the locus of the points S satisfying the relation,SQ^(2)+SR^(2)=2SP^(2) is -

If A(-1, 0), B(1, 0) and C(3, 0) are three given points, then the locus of point D satisfying the relation DA^2 + DB^2 = 2DC^2 is (A) a straight line parallel to x-axis (B) a striaght line parallel to y-axis (C) a circle (D) none of these

If (2)^(log_(2)x^(2))-(3)^(log_(3)(x))-6=0 ,then sum of all possible values of x is

If P(0, 1, 2), Q(4, -2, 1) and R(0, 0, 0) are three points, then anglePRQ is

If 4x+3y-12=0 touches (x-p)^(2)+(y-p)^(2)=p^(2) , then the sum of all the possible values of p is

If P(0,1,2),Q(4,-2,1) and O(0,0,0) are three points, then /_POQ=

Let a in(0,1] satisfies the equation a^(2008)-2a+1=0 and S=1+a+a^(2)+....+a^(2007) Then sum of all possible values of S is a.2010 b.2009 c.2008 d.2

NTA MOCK TESTS-NTA JEE MOCK TEST 90-MATHEMATICS
  1. The angle between the tangents drawn from the point (4, 1) to the para...

    Text Solution

    |

  2. Let A and B be two symmetric matrices. prove that AB=BA if and only if...

    Text Solution

    |

  3. A biased coin is tossed repeatedly until a tail appears for the first ...

    Text Solution

    |

  4. The remainder obtained when 51^25 is divided by 13 is

    Text Solution

    |

  5. 5/(1^2*4^2)+11/(4^2*7^2)+17/(7^2*1 0^2)+

    Text Solution

    |

  6. If the area bounded by the curves {(x, y)|x^(2)-y+1 ge 0} and {(x, y)|...

    Text Solution

    |

  7. Find the number of ordered pairs of (x, y) satisfying the equation y =...

    Text Solution

    |

  8. Let P-=(a, 0), Q-=(-1, 0) and R-=(2, 0) are three given points. If the...

    Text Solution

    |

  9. The equation of the plane which passes through the point of intersecti...

    Text Solution

    |

  10. If the common tangets of x^(2)+y^(2)=r^(2) and (x^(2))/(16)+(y^(2))/(9...

    Text Solution

    |

  11. If z(i) (where i=1, 2,………………..6) be the roots of the equation z^(6)+z^...

    Text Solution

    |

  12. The cosine of the acute angle between the curves y=|x^(2)-1| and y=|x^...

    Text Solution

    |

  13. The integral I=int((1)/(x.secx)-ln(x^(sinx)))dx simplifies to (where, ...

    Text Solution

    |

  14. If 0 < alpha < pi/3, then alpha(secalpha) is

    Text Solution

    |

  15. If the curve satisfies the differential equation x.(dy)/(dx)=x^(2)+y-2...

    Text Solution

    |

  16. If lim(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then ...

    Text Solution

    |

  17. Let A=[a(ij)](5xx5) is a matrix such that a(ij)={(3,AA i= j),(0,Aai ne...

    Text Solution

    |

  18. If the number of solutions of the equation x+y+z=20, where 1 le x lt y...

    Text Solution

    |

  19. From the point A(0, 3) on the circle x^(2)+4x+(y-3)^(2)=0, a chord AB ...

    Text Solution

    |

  20. I=int(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

    Text Solution

    |