Home
Class 12
MATHS
The integral I=int((1)/(x.secx)-ln(x^(si...

The integral `I=int((1)/(x.secx)-ln(x^(sinx)))dx` simplifies to (where, c is the constant of integration)

A

`(ln x)(sinx)+c`

B

`(lnx)(cosx)+c`

C

`xln(sinx)+c`

D

`xln(cosx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( \frac{1}{x \sec x} - \ln(x^{\sin x}) \right) dx \), we can simplify the expression step by step. ### Step 1: Rewrite the integral Start by rewriting the integral: \[ I = \int \left( \frac{1}{x \sec x} - \ln(x^{\sin x}) \right) dx \] We know that \( \frac{1}{\sec x} = \cos x \), so we can rewrite the first term: \[ I = \int \left( \frac{\cos x}{x} - \ln(x^{\sin x}) \right) dx \] ### Step 2: Simplify the logarithmic term Next, simplify the logarithmic term: \[ \ln(x^{\sin x}) = \sin x \cdot \ln x \] Thus, we can rewrite the integral as: \[ I = \int \left( \frac{\cos x}{x} - \sin x \cdot \ln x \right) dx \] ### Step 3: Split the integral Now, we can split the integral into two separate integrals: \[ I = \int \frac{\cos x}{x} \, dx - \int \sin x \cdot \ln x \, dx \] ### Step 4: Solve the second integral using integration by parts For the integral \( \int \sin x \cdot \ln x \, dx \), we will use integration by parts. Let: - \( u = \ln x \) → \( du = \frac{1}{x} dx \) - \( dv = \sin x \, dx \) → \( v = -\cos x \) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int \sin x \cdot \ln x \, dx = -\cos x \cdot \ln x - \int -\cos x \cdot \frac{1}{x} \, dx \] This simplifies to: \[ \int \sin x \cdot \ln x \, dx = -\cos x \cdot \ln x + \int \frac{\cos x}{x} \, dx \] ### Step 5: Substitute back into the integral Substituting this back into our expression for \( I \): \[ I = \int \frac{\cos x}{x} \, dx - \left( -\cos x \cdot \ln x + \int \frac{\cos x}{x} \, dx \right) \] This simplifies to: \[ I = \int \frac{\cos x}{x} \, dx + \cos x \cdot \ln x - \int \frac{\cos x}{x} \, dx \] The \( \int \frac{\cos x}{x} \, dx \) terms cancel out: \[ I = \cos x \cdot \ln x + C \] ### Final Result Thus, the integral simplifies to: \[ I = \cos x \cdot \ln x + C \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 89

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 91

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The integral I=int(e^((e^sinx+sinx)))cos x dx simpllifies to (where, c is the constant of integration)

The indefinite integral inte^(e^(x))((xe^(x).lnx+1)/(x))dx simplifies to (where, c is the constant of integration)

The integral I=int(2sinx)/((3+sin2x))dx simplifies to (where, C is the constant of integration)

The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C is the constant of integration)

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

The value of the integral inte^(x^(2)+(1)/(2))(2x^(2)-(1)/(x)+1)dx is equal to (where C is the constant of integration)

int(dx)/(1+e^(-x)) is equal to : Where c is the constant of integration.

The value of int(1)/((2x-1)sqrt(x^(2)-x))dx is equal to (where c is the constant of integration)

What is int ((1)/(cos^(2)x) - (1)/(sin^(x)x))dx equal to ? where c is the constant of integration

NTA MOCK TESTS-NTA JEE MOCK TEST 90-MATHEMATICS
  1. The angle between the tangents drawn from the point (4, 1) to the para...

    Text Solution

    |

  2. Let A and B be two symmetric matrices. prove that AB=BA if and only if...

    Text Solution

    |

  3. A biased coin is tossed repeatedly until a tail appears for the first ...

    Text Solution

    |

  4. The remainder obtained when 51^25 is divided by 13 is

    Text Solution

    |

  5. 5/(1^2*4^2)+11/(4^2*7^2)+17/(7^2*1 0^2)+

    Text Solution

    |

  6. If the area bounded by the curves {(x, y)|x^(2)-y+1 ge 0} and {(x, y)|...

    Text Solution

    |

  7. Find the number of ordered pairs of (x, y) satisfying the equation y =...

    Text Solution

    |

  8. Let P-=(a, 0), Q-=(-1, 0) and R-=(2, 0) are three given points. If the...

    Text Solution

    |

  9. The equation of the plane which passes through the point of intersecti...

    Text Solution

    |

  10. If the common tangets of x^(2)+y^(2)=r^(2) and (x^(2))/(16)+(y^(2))/(9...

    Text Solution

    |

  11. If z(i) (where i=1, 2,………………..6) be the roots of the equation z^(6)+z^...

    Text Solution

    |

  12. The cosine of the acute angle between the curves y=|x^(2)-1| and y=|x^...

    Text Solution

    |

  13. The integral I=int((1)/(x.secx)-ln(x^(sinx)))dx simplifies to (where, ...

    Text Solution

    |

  14. If 0 < alpha < pi/3, then alpha(secalpha) is

    Text Solution

    |

  15. If the curve satisfies the differential equation x.(dy)/(dx)=x^(2)+y-2...

    Text Solution

    |

  16. If lim(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then ...

    Text Solution

    |

  17. Let A=[a(ij)](5xx5) is a matrix such that a(ij)={(3,AA i= j),(0,Aai ne...

    Text Solution

    |

  18. If the number of solutions of the equation x+y+z=20, where 1 le x lt y...

    Text Solution

    |

  19. From the point A(0, 3) on the circle x^(2)+4x+(y-3)^(2)=0, a chord AB ...

    Text Solution

    |

  20. I=int(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

    Text Solution

    |